Advertisement

Boswellia sacra Plastid Genome Sequencing and Comparative Analysis

  • Ahmed Al-Harrasi
  • Abdul Latif Khan
  • Sajjad Asaf
  • Ahmed Al-Rawahi
Chapter

Abstract

Boswellia sacra (Burseraceae), a keystone endemic species, is famous for producing a fragrant oleogum resin. However, its genetic make-up, especially its chloroplast genome information, is still unknown. Here, we described the chloroplast (cp) genome of B. sacra for the first time. The complete cp sequence revealed a circular genome of 160,543 bp with a 37.61% GC content. The cp genome is a typical quadripartite chloroplast structure with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed the presence of 114 unique genes with 83 protein-coding regions. A phylogenetic analysis revealed that the B. sacra cp genome is closely related to the cp genomes of Azadirachta indica and Citrus sinensis, while most of the syntenic differences were found in the non-coding regions. The pairwise distance among 76 shared genes in B. sacra and A. indica was highest for atpA, rpl2, rps12 and ycf1. The cp genome of B. sacra reveals a novel genome, which could be used for further studies to understand its diversity, taxonomy and phylogeny.

Keywords

Chloroplast DNA Quadripartite Inverted repeat LSC SSC Protein-coding genes Phylogeny Divergence 

References

  1. Addisalem, A., Esselink, G. D., Bongers, F., & Smulders, M. (2015). Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests. AoB Plants, 7, plu086.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asaf, S., Khan, A. L., Khan, M. A., Imran, Q. M., Kang, S.-M., Al-Hosni, K., … Lee, I.-J. (2017). Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS One, 12(8), e0182281.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Corriveau, J. L., & Coleman, A. W. (1988). Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany, 75(10), 1443–1458.CrossRefGoogle Scholar
  4. Cosner, M. E., Raubeson, L. A., & Jansen, R. K. (2004). Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology, 4(1), 27.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Du, F. K., Lang, T., Lu, S., Wang, Y., Li, J., & Yin, K. (2015). An improved method for chloroplast genome sequencing in non-model forest tree species. Tree Genetics & Genomes, 11(6), 114.CrossRefGoogle Scholar
  6. Huang, Y.-Y., Matzke, A. J., & Matzke, M. (2013). Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One, 8(8), e74736.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Hudson, K. R., & Gardner, R. C. (1988). Organisation of the chloroplast genome of kiwifruit (Actinidia deliciosa). Current Genetics, 13(4), 339–342.CrossRefGoogle Scholar
  8. Inamdar, J., Subramanian, R. B., & Mohan, J. (1986). Studies on the resin glands of Azadirachta indica A. Juss.(Meliaceae). Annals of Botany, 58(3), 425–429.CrossRefGoogle Scholar
  9. Ivanova, Z., Sablok, G., Daskalova, E., Zahmanova, G., Apostolova, E., Yahubyan, G., & Baev, V. (2017). Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response. Frontiers in Plant Science, 8, 204.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Jansen, R. K., Cai, Z., Raubeson, L. A., Daniell, H., Leebens-Mack, J., Müller, K. F., … Chumley, T. W. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences, 104(49), 19369–19374.CrossRefGoogle Scholar
  11. Jansen, R. K., Kaittanis, C., Saski, C., Lee, S.-B., Tomkins, J., Alverson, A. J., & Daniell, H. (2006). Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: Effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology, 6(1), 32.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Jansen, R. K., & Ruhlman, T. A. (2012). Plastid genomes of seed plants. In Genomics of chloroplasts and mitochondria (pp. 103–126). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  13. Jansen, R. K., Wojciechowski, M. F., Sanniyasi, E., Lee, S.-B., & Daniell, H. (2008). Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molecular Phylogenetics and Evolution, 48(3), 1204–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Jensen, R. G. (2013). Biochemistry of the chloroplast. Biochemistry Plants, 1, 273–313.Google Scholar
  15. Jin, S., & Daniell, H. (2015). The engineered chloroplast genome just got smarter. Trends in Plant Science, 20(10), 622–640.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Leliaert, F., & Lopez-Bautista, J. M. (2015). The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): Compact genomes and genes of bacterial origin. BMC Genomics, 16(1), 204.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lemieux, C., Otis, C., & Turmel, M. (2014). Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics, 15(1), 857.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Li, Y., Feng, Y., Wang, X. Y., Liu, B., & Lv, G. H. (2014). Failure of DNA barcoding in discriminating Calligonum species. Nordic Journal of Botany, 32(4), 511–517.CrossRefGoogle Scholar
  19. Li, Z.-H., Qian, Z.-Q., Liu, Z.-L., Deng, T.-T., Zu, Y.-M., Zhao, P., & Zhao, G.-F. (2016). The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species to China. Mitochondrial DNA Part A, 27(4), 2635–2636.Google Scholar
  20. Martin, G., Baurens, F.-C., Cardi, C., Aury, J.-M., & D’Hont, A. (2013). The complete chloroplast genome of banana (Musa acuminata, Zingiberales): Insight into plastid monocotyledon evolution. PLoS One, 8(6), e67350.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Moore, M. J., Bell, C. D., Soltis, P. S., & Soltis, D. E. (2007). Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, 104(49), 19363–19368.CrossRefGoogle Scholar
  22. Moore, M. J., Soltis, P. S., Bell, C. D., Burleigh, J. G., & Soltis, D. E. (2010). Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, 107, 4623–4628.CrossRefGoogle Scholar
  23. Muse, S. V., & Gaut, B. S. (1994). A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution, 11(5), 715–724.PubMedGoogle Scholar
  24. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., … Alexeyenko, A. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451), 579.PubMedCrossRefGoogle Scholar
  25. Ohtani, K., Yamamoto, H., & Akimitsu, K. (2002). Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proceedings of the National Academy of Sciences, 99(4), 2439–2444.CrossRefGoogle Scholar
  26. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., … Chang, Z. (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322(6079), 572.CrossRefGoogle Scholar
  27. Percy, D. M., Argus, G. W., Cronk, Q. C., Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., … Graham, S. W. (2014). Understanding the spectacular failure of DNA barcoding in willows (Salix): Does this result from a trans-specific selective sweep? Molecular Ecology, 23(19), 4737–4756.PubMedCrossRefGoogle Scholar
  28. Qian, J., Song, J., Gao, H., Zhu, Y., Xu, J., Pang, X., … Li, C. (2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One, 8(2), e57607.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Qin, Z., Wang, Y., Wang, Q., Li, A., Hou, F., & Zhang, L. (2015). Evolution analysis of simple sequence repeats in plant genome. PLoS One, 10(12), e0144108.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Raffaelli, M., Mosti, S., & Tardelli, M. (2003). The Frankincense Tree (Boswellia sacra Flueck., Burseraceae) in Dhofar, southern Oman: Field-investigations on the natural populations. Webbia, 58(1), 133–149.CrossRefGoogle Scholar
  31. Saina, J. K., Li, Z.-Z., Gichira, A. W., & Liao, Y.-Y. (2018). The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (Mill.)) (Sapindales: Simaroubaceae), an important Pantropical Tree. International Journal of Molecular Sciences, 19(4), 929.PubMedCentralCrossRefGoogle Scholar
  32. Saski, C., Lee, S.-B., Fjellheim, S., Guda, C., Jansen, R. K., Luo, H., … Clarke, J. L. (2007). Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theoretical and Applied Genetics, 115(4), 571–590.PubMedCrossRefGoogle Scholar
  33. Seo, T.-K., & Kishino, H. (2008). Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins. Systematic Biology, 57(3), 367–377.PubMedCrossRefGoogle Scholar
  34. Shang, C., Du, F. K., Yin, K., & Zhang, Z. (2016). The complete chloroplast genome of Cathay Poplar: Poplus cathayana Rehder. Mitochondrial DNA Part B, 1(1), 86–87.CrossRefGoogle Scholar
  35. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94(3), 275–288.PubMedCrossRefGoogle Scholar
  36. Su, H.-J., Hogenhout, S. A., Al-Sadi, A. M., & Kuo, C.-H. (2014). Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids. PLoS One, 9(11), e113049.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Su, J., Zhu, L., Sherman, A., Wang, X., Lin, S., Kamesh, A., … Daniell, H. (2015). Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials, 70, 84–93.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sugiura, M. (1992). The chloroplast genome. Plant Molecular Biology, 19(1), 149–168.PubMedCrossRefGoogle Scholar
  39. Sveinsson, S., & Cronk, Q. (2014). Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evolutionary Biology, 14(1), 228.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Wang, L., Wuyun, T.-n., Du, H., Wang, D., & Cao, D. (2016). Complete chloroplast genome sequences of Eucommia ulmoides: Genome structure and evolution. Tree Genetics & Genomes, 12(1), 12.CrossRefGoogle Scholar
  41. Wang, R.-J., Cheng, C.-L., Chang, C.-C., Wu, C.-L., Su, T.-M., & Chaw, S.-M. (2008). Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 8(1), 36.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wang, W.-C., Chen, S.-Y., & Zhang, X.-Z. (2016). Chloroplast genome evolution in Actinidiaceae: clpP loss, heterogenous divergence and phylogenomic practice. PLoS One, 11(9), e0162324.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Williams, A. V., Boykin, L. M., Howell, K. A., Nevill, P. G., & Small, I. (2015). The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene. PLoS One, 10(5), e0125768.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Williams, A. V., Miller, J. T., Small, I., Nevill, P. G., & Boykin, L. M. (2016). Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Molecular Phylogenetics and Evolution, 96, 1–8.PubMedCrossRefGoogle Scholar
  45. Xie, Q., Michaeli, S., Peled-Zehavi, H., & Galili, G. (2015). Chloroplast degradation: One organelle, multiple degradation pathways. Trends in Plant Science, 20(5), 264–265.PubMedCrossRefGoogle Scholar
  46. Yang, J.-B., Yang, S.-X., Li, H.-T., Yang, J., & Li, D.-Z. (2013). Comparative chloroplast genomes of Camellia species. PLoS One, 8(8), e73053.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Yang, Y., Zhou, T., Duan, D., Yang, J., Feng, L., & Zhao, G. (2016). Comparative analysis of the complete chloroplast genomes of five Quercus species. Frontiers in Plant Science, 7, 959.PubMedPubMedCentralGoogle Scholar
  48. Yao, X., Tang, P., Li, Z., Li, D., Liu, Y., & Huang, H. (2015). The first complete chloroplast genome sequences in Actinidiaceae: Genome structure and comparative analysis. PLoS One, 10(6), e0129347.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Yap, J.-Y. S., Rohner, T., Greenfield, A., Van Der Merwe, M., McPherson, H., Glenn, W., … Wilton, A. (2015). Complete chloroplast genome of the wollemi pine (Wollemia nobilis): Structure and evolution. PLoS One, 10(6), e0128126.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zhang, Q., & Liu, Y. (2003). Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology, 44(9), 941–951.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Al-Harrasi
    • 1
  • Abdul Latif Khan
    • 1
  • Sajjad Asaf
    • 1
  • Ahmed Al-Rawahi
    • 1
  1. 1.University of NizwaNizwaOman

Personalised recommendations