Advertisement

Intranasal Delivery of Drugs for Ischemic Stroke Treatment: Targeting IL-17A

  • Yun Lin
  • Jiancheng Zhang
  • Jian WangEmail author
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Stroke is the second most common cause of death worldwide and a major cause of disability. However, uncertainty surrounds the efficacy and safety of peripheral or intracerebroventricular drug administration for stroke treatment. Intranasal delivery is emerging as a noninvasive option for delivering drugs to the central nervous system with minimal peripheral exposure. Use of the intranasal route could potentially reduce systemic exposure and side effects. Intranasal delivery provides rapid onset that occurs within minutes. Additionally, this method facilitates the delivery of large and/or charged molecules, which fail to effectively cross the blood-brain barrier. We have shown previously that intranasal delivery of exogenous interleukin-17A (IL-17A) promotes the survival, neuronal differentiation, and subsequent synaptogenesis of neural precursor cells in the subventricular zone during stroke recovery, as well as spontaneous recovery and angiogenesis. Therefore, although IL-17A is well-known for contributing to damage in acute ischemic stroke, it might also mediate neurorepair and spontaneous recovery after stroke when delivered intranasally.

Keywords

Central nervous system Interleukin-17 A Intranasal delivery Neurorepair Stroke 

References

  1. 1.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371:1612–23.CrossRefGoogle Scholar
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.CrossRefGoogle Scholar
  3. 3.
    Schwamm LH, Ali SF, Reeves MJ, Smith EE, Saver JL, Messe S, Bhatt DL, Grau-Sepulveda MV, Peterson ED, Fonarow GC. Temporal trends in patient characteristics and treatment with intravenous thrombolysis among acute ischemic stroke patients at get with the guidelines-stroke hospitals. Circ Cardiovasc Qual Outcomes. 2013;6:543–9.CrossRefGoogle Scholar
  4. 4.
    Gross CG. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci. 2000;1:67–73.CrossRefGoogle Scholar
  5. 5.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103:13198–202.CrossRefGoogle Scholar
  6. 6.
    Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, Marin R, Marti-Vilalta JL, Garcia-Verdugo JM. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74:357–65.CrossRefGoogle Scholar
  7. 7.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–47.CrossRefGoogle Scholar
  8. 8.
    Frey WH 2nd. (WO/1991/007947) neurologic agents for nasal administration to the brain (priority date 5.12.89). Geneva: World Intellectual Property Organization; 1991.Google Scholar
  9. 9.
    Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20–35.CrossRefGoogle Scholar
  10. 10.
    Lindup WE, Orme MC. Clinical pharmacology: plasma protein binding of drugs. Br Med J (Clin Res Ed). 1981;282:212–4.CrossRefGoogle Scholar
  11. 11.
    Jiang Y, Zhu J, Xu G, Liu X. Intranasal delivery of stem cells to the brain. Expert Opin Drug Deliv. 2011;8:623–32.CrossRefGoogle Scholar
  12. 12.
    Dhuria SV, Hanson LR, Frey WN. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.CrossRefGoogle Scholar
  13. 13.
    Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.CrossRefGoogle Scholar
  14. 14.
    Chapman CD, Frey WN, Craft S, Danielyan L, Hallschmid M, Schioth HB, Benedict C. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30:2475–84.CrossRefGoogle Scholar
  15. 15.
    Liu XF, Fawcett JR, Hanson LR, Frey WN. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13:16–23.CrossRefGoogle Scholar
  16. 16.
    Rodriguez CY, Mengana TY, Munoz CA, Subiros MN, Gonzalez-Quevedo A, Sosa TI, Garcia RJ. Treatment with nasal neuro-EPO improves the neurological, cognitive, and histological state in a gerbil model of focal ischemia. ScientificWorldJournal. 2010;10:2288–300.CrossRefGoogle Scholar
  17. 17.
    Fletcher L, Kohli S, Sprague SM, Scranton RA, Lipton SA, Parra A, Jimenez DF, Digicaylioglu M. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111:164–70.CrossRefGoogle Scholar
  18. 18.
    Zhu W, Cheng S, Xu G, Ma M, Zhou Z, Liu D, Liu X. Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv. 2011;18:338–43.CrossRefGoogle Scholar
  19. 19.
    Yang JP, Liu HJ, Wang ZL, Cheng SM, Cheng X, Xu GL, Liu XF. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett. 2009;461:212–6.CrossRefGoogle Scholar
  20. 20.
    Ma M, Ma Y, Yi X, Guo R, Zhu W, Fan X, Xu G, Frey WN, Liu X. Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci. 2008;9:117.CrossRefGoogle Scholar
  21. 21.
    Ma YP, Ma MM, Cheng SM, Ma HH, Yi XM, Xu GL, Liu XF. Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia. Neurosci Lett. 2008;437:93–7.CrossRefGoogle Scholar
  22. 22.
    Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett. 2008;446:30–5.CrossRefGoogle Scholar
  23. 23.
    Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64:477–85.CrossRefGoogle Scholar
  24. 24.
    Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.CrossRefGoogle Scholar
  25. 25.
    Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50.CrossRefGoogle Scholar
  26. 26.
    Zhang J, Mao X, Zhou T, Cheng X, Lin Y. IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience. 2014;274:419–28.CrossRefGoogle Scholar
  27. 27.
    Veenstra M, Ransohoff RM. Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol. 2012;246:1–9.CrossRefGoogle Scholar
  28. 28.
    Lin Y, Zhang JC, Yao CY, Wu Y, Abdelgawad AF, Yao SL, Yuan SY. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis. 2016;7:e2273.CrossRefGoogle Scholar
  29. 29.
    Zhang J, Yao C, Chen J, Zhang Y, Yuan S, Lin Y. Hyperforin promotes post-stroke functional recovery through interleukin (IL)-17A-mediated angiogenesis. Brain Res. 2016;1646:504–13.CrossRefGoogle Scholar
  30. 30.
    Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1:383–6.CrossRefGoogle Scholar
  31. 31.
    Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.CrossRefGoogle Scholar
  32. 32.
    Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci. 2006;26:3491–5.CrossRefGoogle Scholar
  33. 33.
    Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A. 2012;109:7505–10.CrossRefGoogle Scholar
  34. 34.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.CrossRefGoogle Scholar
  35. 35.
    Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265:1883–5.CrossRefGoogle Scholar
  36. 36.
    Chen J, Cui X, Zacharek A, Jiang H, Roberts C, Zhang C, Lu M, Kapke A, Feldkamp CS, Chopp M. Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol. 2007;62:49–58.CrossRefGoogle Scholar
  37. 37.
    Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26:13007–16.CrossRefGoogle Scholar
  38. 38.
    Chopp M, Zhang ZG, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke. 2007;38:827–31.CrossRefGoogle Scholar
  39. 39.
    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.CrossRefGoogle Scholar
  40. 40.
    Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H. Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol. 2014;175:268–84.CrossRefGoogle Scholar
  41. 41.
    Meng X, Zhang Y, Lao L, Saito R, Li A, Backman CM, Berman BM, Ren K, Wei PK, Zhang RX. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain. 2013;154:294–305.CrossRefGoogle Scholar
  42. 42.
    Hermann DM. Enhancing the delivery of erythropoietin and its variants into the ischemic brain. ScientificWorldJournal. 2009;9:967–9.CrossRefGoogle Scholar
  43. 43.
    Merelli A, Caltana L, Girimonti P, Ramos AJ, Lazarowski A, Brusco A. Recovery of motor spontaneous activity after intranasal delivery of human recombinant erythropoietin in a focal brain hypoxia model induced by CoCl2 in rats. Neurotox Res. 2011;20:182–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesia, Institute of Anesthesia and Critical Care Medicine, Union HospitalTongji Medical College Huazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union HospitalTongji Medical College Huazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Anesthesiology and Critical Care MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations