Intranasal Treatment in Subarachnoid Hemorrhage

  • Basak Caner
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Aneurysmal subarachnoid hemorrhage is a devastating disease because of the initial mortality rate and delayed cerebral iscemia which can be caused by several pathological mechanisms not fully understood yet. To date there is no specific treatment for the delayed cerebral iscemia. One of the most important challenges in subarachnoid hemorrhage research area is the blood brain barrier. Intranasal treatment is a promising way of treatment to bypass the blood brain barrier. In this chapter intranasal treatment options in subarachnoid hemorrhage will be discussed.


Subarachnoid hemorrhage Vasospasm Intranasal delivery Early brain injury 


  1. 1.
    Topkoru B, Egemen E, Solaroglu I, Zhang JH. Early brain injury or vasospasm? An overview of common mechanisms. Curr Drug Targets. 2017;18(12):1424–9.CrossRefGoogle Scholar
  2. 2.
    Caner B, Hou J, Altay O, Fuj M 2nd, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem. 2012;123(Suppl 2):12–21.CrossRefGoogle Scholar
  3. 3.
    Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing; Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.CrossRefGoogle Scholar
  4. 4.
    Grasso G, Tomasello F. Erythropoietin for subarachnoid hemorrhage: is there a reason for hope. World Neurosurg. 2012;77(1):46–8.CrossRefGoogle Scholar
  5. 5.
    Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schiöth HB, Benedict C. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30(10):2475–84.CrossRefGoogle Scholar
  6. 6.
    Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017;31:109–33.CrossRefGoogle Scholar
  7. 7.
    Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5(6):709–33.CrossRefGoogle Scholar
  8. 8.
    Thorne RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692:278–82.CrossRefGoogle Scholar
  9. 9.
    Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.CrossRefGoogle Scholar
  10. 10.
    Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH. Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010;68:650–60.CrossRefGoogle Scholar
  11. 11.
    Topkoru BC, Altay O, Duris K, Krafft PR, Yan J, Zhang JH. Nasal administration of recombinant osteopontin attenuates early brain injury after subarachnoid hemorrhage. Stroke. 2013;44(11):3189–94.CrossRefGoogle Scholar
  12. 12.
    Doyle KP, Yang T, Lessov NS, Ciesielski TM, Stevens SL, Simon RP, et al. Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. J Cereb Blood Flow Metab. 2008;28:1235–48.CrossRefGoogle Scholar
  13. 13.
    Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res. 2014;5(4):423–8.CrossRefGoogle Scholar
  14. 14.
    Wu J, Zhang Y, Yang P, Enkhjargal B, Manaenko A, Tang J, Pearce WJ, Hartman R, Obenaus A, Chen G, Zhang JH. Recombinant osteopontin stabilizes smooth muscle cell phenotype via integrin receptor/integrin-linked kinase/Rac-1 pathway after subarachnoid hemorrhage in rats. Stroke. 2016;47(5):1319–27.CrossRefGoogle Scholar
  15. 15.
    Lau WL, Leaf EM, Hu MC, et al. Vitamin d receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82:1261–70.CrossRefGoogle Scholar
  16. 16.
    Enkhjargal B, McBride DW, Manaenko A, Reis C, Sakai Y, Tang J, Zhang JH. Intranasal administration of vitamin D attenuates blood-brain barrier disruption through endogenous upregulation of osteopontin and activation of CD44/P-gp glycosylation signaling after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2017;37(7):2555–66.CrossRefGoogle Scholar
  17. 17.
    Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats. Neuropharmacology. 2017;119:123–33.CrossRefGoogle Scholar
  18. 18.
    Donega V, Nijboer CH, Braccioli L, Slaper-Cortenbach I, Kavelaars A, van Bel F, Heijnen CJ. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions. PLoS One. 2014;9(11):e112339.CrossRefGoogle Scholar
  19. 19.
    Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(2):329–40.CrossRefGoogle Scholar
  20. 20.
    Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM. Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis. 2012;21:445–51.CrossRefGoogle Scholar
  21. 21.
    Khalili MA, Sadeghian-Nodoushan F, Fesahat F, Mir-Esmaeili SM, Anvari M, Hekmati-Moghadam SH. Mesenchymal stem cells improved the ultrastructural morphology of cerebral tissues after subarachnoid hemorrhage in rats. Exp Neurobiol. 2014;23:77–85.CrossRefGoogle Scholar
  22. 22.
    Nijboer CH, Kooijman E, van Velthoven CT, van Tilborg E, Tiebosch IA, Eijkelkamp N, Dijkhuizen RM, Kesecioglu J, Heijnen CJ. Intranasal stem cell treatment as a novel therapy for subarachnoid hemorrhage. Stem Cells Dev. 2018;27(5):313–25.CrossRefGoogle Scholar
  23. 23.
    Rashed HM, Shamma RN, Basalious EB. Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv. 2016;24(1):181–7.CrossRefGoogle Scholar
  24. 24.
    Garcia-Rodiriguez JC, Sosa-Teste I. The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acute ischemic stroke in humans. Sci World J. 2009;9:970–81.CrossRefGoogle Scholar
  25. 25.
    Springborg JB, Moller C, Gideon P, Jorgensen OS, Juhler M, Olsen NV. Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir. 2007;149:1089–101.CrossRefGoogle Scholar
  26. 26.
    Tseng MY, Hutchinson PJ, Richards HK, Czosnyka M, Pickard JD, Erber WN, Brown S, Kirkpatrick PJ. Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a phase II randomized, double-blind, placebo-controlled trial. Clinical article. J Neurosurg. 2009;111:171–80.CrossRefGoogle Scholar
  27. 27.
    Muñoz-Cernada A, Pardo-Ruiz Z, Montero-Alejo V, Fernández-Cervera M, Sosa-Testé I, García-Rodríguez JC. Effect of nonionic surfactants and HPMC F4M on the development of formulations of Neuro-EPO as a neuroprotective agent. JAPST. 2014;1:22–35.CrossRefGoogle Scholar
  28. 28.
    Santos-Morales O, Díaz-Machado A, Jiménez-Rodríguez D, Pomares-Iturralde Y, Festary-Casanovas T, González-Delgado CA, Pérez-Rodríguez S, Alfonso-Muñoz E, Viada-González C, Piedra-Sierra P, García-García I, Amaro-González D, NeuroEPO Study Group. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: a randomized, parallel, open-label safety study. BMC Neurol. 2017;17(1):129. Scholar
  29. 29.
    Grinberg YY, Zitzow LA, Kraig RP. Intranasally administered IGF-1 inhibits spreading depression in vivo. Brain Res. 2017;15(1677):47–57.CrossRefGoogle Scholar
  30. 30.
    Zhuang Z, Zhao X, Wu Y, Huang R, Zhu L, Zhang Y, Shi J. The anti-apoptotic effect of PI3K-Akt signaling pathway after subarachnoid hemorrhage in rats. Ann Clin Lab Sci. 2011;41(4):364–72.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Basak Caner
    • 1
  1. 1.Department of NeurosurgeryMedeniyet University Goztepe Education and Research HospitalIstanbulTurkey

Personalised recommendations