Advertisement

Quasi-Optimal Recombination Operator

  • Francisco ChicanoEmail author
  • Gabriela Ochoa
  • Darrell Whitley
  • Renato Tinós
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11452)

Abstract

The output of an optimal recombination operator for two parent solutions is a solution with the best possible value for the objective function among all the solutions fulfilling the gene transmission property: the value of any variable in the offspring must be inherited from one of the parents. This set of solutions coincides with the largest dynastic potential for the two parent solutions of any recombination operator with the gene transmission property. In general, exploring the full dynastic potential is computationally costly, but if the variables of the objective function have a low number of non-linear interactions among them, the exploration can be done in \(O(4^{\beta }(n+m)+n^2)\) time, for problems with n variables, m subfunctions and \(\beta \) a constant. In this paper, we propose a quasi-optimal recombination operator, called Dynastic Potential Crossover (DPX), that runs in \(O(4^{\beta }(n+m)+n^2)\) time in any case and is able to explore the full dynastic potential for low-epistasis combinatorial problems. We compare this operator, both theoretically and experimentally, with two recently defined efficient recombination operators: Partition Crossover (PX) and Articulation Points Partition Crossover (APX). The empirical comparison uses NKQ Landscapes and MAX-SAT instances.

Keywords

Recombination operator Dynastic potential Gray box optimization 

References

  1. 1.
    Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339–384 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eremeev, A.V., Kovalenko, J.V.: Optimal recombination in genetic algorithms. CoRR abs/1307.5519 (2013). http://arxiv.org/abs/1307.5519
  3. 3.
    Hammer, P.L., Rosenberg, I., Rudeanu, S.: On the determination of the minima of pseudo-boolean functions. Stud. Cerc. Mat. 14, 359–364 (1963)Google Scholar
  4. 4.
    Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30577-4_1CrossRefGoogle Scholar
  5. 5.
    Whitley, D., Chicano, F., Goldman, B.W.: Gray box optimization for mk landscapes (nk landscapes and max-ksat). Evol. Comput. 24, 491–519 (2016)CrossRefGoogle Scholar
  6. 6.
    Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean optimization. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII FOGA 2015, pp. 137–149. ACM, New York (2015)Google Scholar
  7. 7.
    Chicano, F., Ochoa, G., Whitley, D., Tinós, R.: Enhancing partition crossover with articulation points analysis. In: Proceedings of GECCO. GECCO 2018, pp. 269–276. ACM, New York (2018)Google Scholar
  8. 8.
    Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable NK landscapes by hybridizing deterministic recombination and local search. In: Genetic and Evolutionary Computation Conference GECCO 2017, pp. 753–760 (2017)Google Scholar
  9. 9.
    Chen, W., Whitley, D., Tinós, R., Chicano, F.: Tunneling between plateaus: improving on a state-of-the-art maxsat solver using partition crossover. In: Proceedings of GECCO. GECCO 2018, pp. 921–928. ACM, New York (2018)Google Scholar
  10. 10.
    Tinós, R., Zhao, L., Chicano, F., Whitley, D.: Nk hybrid genetic algorithm for clustering. IEEE Trans. Evol. Comput. 22(5), 748–761 (2018)CrossRefGoogle Scholar
  11. 11.
    Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999)Google Scholar
  12. 12.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60618-1_88CrossRefGoogle Scholar
  14. 14.
    Newman, M.E.J., Engelhardt, R.: Effect of neutral selection on the evolution of molecular species. Proc. R. Soc. London B 256, 1333–1338 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MalagaMálagaSpain
  2. 2.University of StirlingStirlingUK
  3. 3.Colorado State UniversityFort CollinsUSA
  4. 4.University of Sao PauloSão PauloBrazil

Personalised recommendations