Multiple Periods Vehicle Routing Problems: A Case Study

  • Bilal MessaoudiEmail author
  • Ammar Oulamara
  • Nastaran Rahmani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11452)


In this paper, we consider a challenging problem faced by a hygiene services company. The problem consists of planning and routing a set of customers over a 3-month horizon period where multiple frequencies of visits can be required simultaneously by each single customer. The objective is then threefold: (1) balancing workload between vehicles (agents) (2) minimizing number of visits to the same customer (3) minimizing total routing costs. In this context, a routing plan must be prepared for the whole horizon, taking into account all constraints of the problem. We model the problem using a decomposition approach of planning horizon, namely, weeks planning and days planning optimization. We propose an adaptive large neighborhood search with several operators for routing phase of solving approach. To evaluate the performance of the solving approach we solve an industrial instance with more than 6000 customers and 69951 requests of visits. The results show an excellent performance of the solving approach in terms of solution quality compared with the existing plan used by the hygiene services company.


Vehicle routing problem Planning and routing Adaptive large neighborhood search 


  1. 1.
    Nuortio, T., Kytöjoki, J., Niska, H., Bräysy, O.: Improved route planning and scheduling of waste collection and transport. Expert Syst. Appl. 30(2), 223–232 (2006)CrossRefGoogle Scholar
  2. 2.
    Matos, A.C., Oliveira, R.C.: An experimental study of the ant colony system for the period vehicle routing problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 286–293. Springer, Heidelberg (2004). Scholar
  3. 3.
    Coene, S., Arnout, A., Spieksma, F.C.R.: On a periodic vehicle routing problem. J. Oper. Res. Soc. 61(12), 1719–1728 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ronen, D., Goodhart, C.A.: Tactical store delivery planning. J. Oper. Res. Soc. 59(8), 1047–1054 (2008)CrossRefGoogle Scholar
  5. 5.
    An, Y.J., Kim, Y.D., Jeong, B.J., Kim, S.D.: Scheduling healthcare services in a home healthcare system. J. Oper. Res. Soc. 63(11), 1589–1599 (2012)CrossRefGoogle Scholar
  6. 6.
    Blakeley, F., Argüello, B., Cao, B., Hall, W., Knolmajer, J.: Optimizing periodic maintenance operations for Schindler elevator corporation. Interfaces 33(1), 67–79 (2003)CrossRefGoogle Scholar
  7. 7.
    Campbell, A.M., Wilson, J.H.: Forty years of periodic vehicle routing. Networks 63(3), 276–276 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Beltrami, E.J., Bodin, L.D.: Networks and vehicle routing for municipal waste collection. Networks 4(1), 65–94 (1974)zbMATHCrossRefGoogle Scholar
  9. 9.
    Russell, R., Igo, W.: An assignment routing problem. Networks 9(1), 1–17 (1979)CrossRefGoogle Scholar
  10. 10.
    Christofides, N., Beasley, J.E.: The period routing problem. Networks 14(2), 237–256 (1984)zbMATHCrossRefGoogle Scholar
  11. 11.
    Russell, R.A., Gribbin, D.: A multiphase approach to the period routing problem. Networks 21(7), 747–765 (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Netw. Int. J. 30(2), 105–119 (1997)zbMATHGoogle Scholar
  13. 13.
    Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Francis, P., Smilowitz, K., Tzur, M.: The period vehicle routing problem with service choice. Transp. Sci. 40(4), 439–454 (2006)CrossRefGoogle Scholar
  15. 15.
    Alegre, J., Laguna, M., Pacheco, J.: Optimizing the periodic pick-up of raw materials for a manufacturer of auto parts. Eur. J. Oper. Res. 179(3), 736–746 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mourgaya, M., Vanderbeck, F.: Column generation based heuristic for tactical planning in multi-period vehicle routing. Eur. J. Oper. Res. 183(3), 1028–1041 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search heuristic for periodic routing problems. Eur. J. Oper. Res. 195(3), 791–802 (2009)zbMATHCrossRefGoogle Scholar
  18. 18.
    Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)CrossRefGoogle Scholar
  20. 20.
    Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Google: Distance matrix API. Accessed 30 Oct 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universiy of Lorraine - LORIA UMR 7503Vandoeuvre-les-NancyFrance
  2. 2.Antsway SA, ARTEM - 92Nancy CedexFrance

Personalised recommendations