Advertisement

A Binary Algebraic Differential Evolution for the MultiDimensional Two-Way Number Partitioning Problem

  • Valentino SantucciEmail author
  • Marco Baioletti
  • Gabriele Di Bari
  • Alfredo Milani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11452)

Abstract

This paper introduces MADEB, a Memetic Algebraic Differential Evolution algorithm for the Binary search space. MADEB has been applied to the Multidimensional Two-Way Number Partitioning Problem (MDTWNPP) and its main components are the binary differential mutation operator and a variable neighborhood descent procedure. The binary differential mutation is a concrete application of the abstract algebraic framework for the binary search space. The variable neighborhood descent is a local search procedure specifically designed for MDTWNPP. Experiments have been held on a widely accepted benchmark suite and MADEB is experimentally compared with respect to the current state-of-the-art algorithms for MDTWNPP. The experimental results clearly show that MADEB is the new state-of-the-art algorithm in the problem here investigated.

Keywords

Binary algebraic differential evolution Multidimensional Two-Way Number Partitioning Problem Variable neighborhood descent 

Notes

Acknowledgement

The research described in this work has been partially supported by: the research grant “Fondi per i progetti di ricerca scientifica di Ateneo 2019” of the University for Foreigners of Perugia under the project “Algoritmi evolutivi per problemi di ottimizzazione e modelli di apprendimento automatico con applicazioni al Natural Language Processing”; and by RCB-2015 Project “Algoritmi Randomizzati per l’Ottimizzazione e la Navigazione di Reti Semantiche” and RCB-2015 Project “Algoritmi evolutivi per problemi di ottimizzazione combinatorica” of Department of Mathematics and Computer Science of University of Perugia.

References

  1. 1.
    Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Trans. Evol. Comput. 20(5), 682–694 (2016).  https://doi.org/10.1109/TEVC.2015.2507785CrossRefzbMATHGoogle Scholar
  2. 2.
    Kojić, J.: Integer linear programming model for multidimensional two-waynumber partitioning problem. Comput. Math. Appl. 60(8), 2302–2308 (2010). http://www.sciencedirect.com/science/article/pii/S0898122110005882MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mertens, S.: The easiest hard problem: number partitioning. Comput. Complex. Stat. Phys. 125(2), 125–139 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily good approximations for the NP-hard partition problem. In: Proceedings of 15th International Conference on Parallel Problem Solving from Nature-PPSN XV - Part II, pp. 16–28 (2018)Google Scholar
  5. 5.
    Rodriguez, F.J., Glover, F., García-Martínez, C., Martí, R., Lozano, M.: Grasp with exterior path-relinking and restricted local search for the multidimensional two-way number partitioning problem. Comput. Oper. Res. 78, 243–254 (2017). http://www.sciencedirect.com/science/article/pii/S0305054816302209MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pop, P.C., Matei, O.: A memetic algorithm approach for solving the multidimensional multi-way number partitioning problem. Appl. Math. Model. 37(22), 9191–9202 (2013). http://www.sciencedirect.com/science/article/pii/S0307904X13002692MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kratica, J., Kojić, J., Savić, A.: Two metaheuristic approaches for solving multidimensional two-way number partitioning problem. Comput. Oper. Res. 46, 59–68 (2014). http://www.sciencedirect.com/science/article/pii/S0305054814000045MathSciNetCrossRefGoogle Scholar
  8. 8.
    Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the permutation flowshop scheduling problem with total flow time criterion. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 161–170. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_16CrossRefGoogle Scholar
  9. 9.
    Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–286 (2016).  https://doi.org/10.3233/AIC-150695MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the linear ordering problem. In: Companion Material Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 1479–1480 (2015).  https://doi.org/10.1145/2739482.2764693
  11. 11.
    Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combinatorial differential evolution. In: Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015).  https://doi.org/10.1109/SMC.2015.373
  12. 12.
    Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evolution for the linear ordering problem with cumulative costs. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_12CrossRefGoogle Scholar
  13. 13.
    Baioletti, M., Milani, A., Santucci, V.: MOEA/DEP: an algebraic decomposition-based evolutionary algorithm for the multiobjective permutation flowshop scheduling problem. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 132–145. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77449-7_9CrossRefGoogle Scholar
  14. 14.
    Baioletti, M., Milani, A., Santucci, V.: Learning Bayesian networks with algebraic differential evolution. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 436–448. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99259-4_35CrossRefGoogle Scholar
  15. 15.
    Wang, L., Fu, X., Mao, Y., Menhas, M.I., Fei, M.: A novel modified binary differential evolution algorithm and its applications. Neurocomputing 98, 55–75 (2012). http://www.sciencedirect.com/science/article/pii/S0925231212004316CrossRefGoogle Scholar
  16. 16.
    Pampara, G., Engelbrecht, A.P., Franken, N.: Binary differential evolution. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1873–1879, July 2006Google Scholar
  17. 17.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).  https://doi.org/10.1023/A:1008202821328MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Milani, A., Santucci, V.: Asynchronous differential evolution. In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–7 (2010).  https://doi.org/10.1109/CEC.2010.5586107
  19. 19.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31306-0CrossRefzbMATHGoogle Scholar
  20. 20.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  21. 21.
    Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016). http://www.sciencedirect.com/science/article/pii/S2210650216000146CrossRefGoogle Scholar
  22. 22.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  23. 23.
    Pavai, G., Geetha, T.V.: A survey on crossover operators. ACM Comput. Surv. 49(4), 1–43 (2016). http://doi.acm.org/10.1145/3009966CrossRefGoogle Scholar
  24. 24.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). http://www.sciencedirect.com/science/article/pii/S2210650211000034CrossRefGoogle Scholar
  25. 25.
    Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Trans. Evol. Comput. 18(2), 286–300 (2014)CrossRefGoogle Scholar
  26. 26.
    Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for the permutations search space. In: Proceedings of 2017 IEEE Congress on Evolutionary Computation (CEC 2017), pp. 1587–1594 (2017).  https://doi.org/10.1109/CEC.2017.7969492
  27. 27.
    Baioletti, M., Milani, A., Santucci, V.: Automatic algebraic evolutionary algorithms. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 271–283. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78658-2_20CrossRefGoogle Scholar
  28. 28.
    Baioletti, M., Milani, A., Santucci, V.: Algebraic crossover operators for permutations. In: 2018 IEEE Congress on Evolutionary Computation (CEC 2018), pp. 1–8 (2018).  https://doi.org/10.1109/CEC.2018.8477867
  29. 29.
    Santucci, V., Milani, A.: Particle swarm optimization in the EDAs framework. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 96, pp. 87–96. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20505-7_7

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentino Santucci
    • 1
    Email author
  • Marco Baioletti
    • 2
  • Gabriele Di Bari
    • 2
  • Alfredo Milani
    • 2
  1. 1.Department of Humanities and Social SciencesUniversity for Foreigners of PerugiaPerugiaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations