Advertisement

A Unifying View on Recombination Spaces and Abstract Convex Evolutionary Search

  • Marcos Diez GarcíaEmail author
  • Alberto Moraglio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11452)

Abstract

Previous work proposed to unify an algebraic theory of fitness landscapes and a geometric framework of evolutionary algorithms (EAs). One of the main goals behind this unification is to develop an analytical method that verifies if a problem’s landscape belongs to certain abstract convex landscape classes, where certain recombination-based EAs (without mutation) have polynomial runtime performance. This paper advances such unification by showing that: (a) crossovers can be formally classified according to geometric or algebraic axiomatic properties; and (b) the population behaviour induced by certain crossovers in recombination-based EAs can be formalised in the geometric and algebraic theories. These results make a significant contribution to the basis of an integrated geometric-algebraic framework with which analyse recombination spaces and recombination based EAs.

Keywords

Abstract convex landscape Abstract convex search Convex hull closure Geometric crossover Recombination P-structure 

References

  1. 1.
    García, M.D., Moraglio, A.: Bridging elementary landscapes and a geometric theory of evolutionary algorithms: first steps. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part II. LNCS, vol. 11102, pp. 194–206. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99259-4_16CrossRefGoogle Scholar
  2. 2.
    Moraglio, A., Sudholt, D.: Principled design and runtime analysis of abstract convex evolutionary search. Evol. Comput. 25(2), 205–236 (2017)CrossRefGoogle Scholar
  3. 3.
    Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Doctoral thesis, University of Essex, Essex, UK, November 2007Google Scholar
  4. 4.
    Stadler, P.F.: Towards a theory of landscapes. In: López-Peña, R., Waelbroeck, H., Capovilla, R., García-Pelayo, R., Zertuche, F. (eds.) Complex Systems and Binary Networks. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0103571CrossRefGoogle Scholar
  5. 5.
    Stadler, P.F., Wagner, G.P.: Algebraic theory of recombination spaces. Evol. Comput. 5(3), 241–275 (1998)CrossRefGoogle Scholar
  6. 6.
    Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent fourier decomposition of fitness landscapes over recombination spaces: evolvability of complex characters. Bull. Math. Biol. 62(3), 399–428 (2000). Society for Mathematical BiologyCrossRefGoogle Scholar
  7. 7.
    van de Vel, M.L.J.: Theory of Convex Structures. North-Holland Mathematical Library, North-Holland (1993)zbMATHGoogle Scholar
  8. 8.
    Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73482-6_1CrossRefzbMATHGoogle Scholar
  9. 9.
    Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebr. Discret. Meth. 66(3), 231–247 (1986). Society for Industrial and Applied MathematicsMathSciNetzbMATHGoogle Scholar
  10. 10.
    Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 151–162. ACM, Schwarzenberg, Austria (2011)Google Scholar
  11. 11.
    Changat, M., et al.: Topological Representation of the Transit Sets of k-Point Crossover Operators. arXiv:1712.09022 (2017)
  12. 12.
    Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2(1), 37–43 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Moraglio, A., Togelius, J., Silva, S.: Geometric differential evolution for combinatorial and programs spaces. Evol. Comput. 21(4), 591–624 (2013)CrossRefGoogle Scholar
  14. 14.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems. MIT Press, Cambridge (1992, reprint edn)Google Scholar
  15. 15.
    Stadler, B.M.R., Stadler, P.F.: Generalized topological spaces in evolutionary theory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42(3), 577–585 (2002). American Chemical SocietyCrossRefGoogle Scholar
  16. 16.
    Mitavskiy, B.: Crossover invariant subsets of the search space for evolutionary algorithms. Evol. Comput. 12(1), 19–46 (2004)CrossRefGoogle Scholar
  17. 17.
    Pelayo, I.M.: Geodesic Convexity in Graphs. Springer Briefs in Mathematics. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-8699-2CrossRefzbMATHGoogle Scholar
  18. 18.
    Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence-Volume 1, IJCAI 1985, pp. 151–162. Morgan Kaufmann Publishers Inc. (1985)Google Scholar
  19. 19.
    Thorhauer, A., Rothlauf, F.: On the bias of syntactic geometric recombination in genetic programming and grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 1103–1110. ACM, New York, NY, USA (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ExeterExeterUK

Personalised recommendations