Advertisement

A Hybrid Multiobjective Differential Evolution Approach to Stator Winding Optimization

  • André M. SilvaEmail author
  • Fernando J. T. E. Ferreira
  • Carlos Henggeler Antunes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

This paper describes a multiobjective differential evolution approach to the optimization of the design of alternating current distributed stator windings of electric motors. The objective functions are minimizing both the machine airgap magnetomotive force distortion and the winding wire length. Constraints are related to the physical feasibility of solutions. Four distinct winding types are considered. Three mutation variations of the multiobjective differential evolution algorithm are developed and assessed using different performance metrics. These algorithmic approaches are able to generate well-distributed, uniformly spread solutions on the nondominated front. The characterization of the nondominated fronts conveys helpful information for aiding design engineers to choose the most suitable compromise solution for a specific machine, embodying a balanced trade-off between machine efficiency and manufacturing cost.

Keywords

Multiobjective differential evolution Optimization of distributed windings Mutation operators Machine efficiency 

References

  1. 1.
    Tessarolo, A.: A quadratic-programming approach to the design optimization of fractional-slot concentrated windings for surface permanent-magnet machines. IEEE Trans. Energy Convers. 33(1), 442–452 (2018)CrossRefGoogle Scholar
  2. 2.
    Smith, A.C., Delgado, D.: Automated AC winding design. In: 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), pp. 1–6, April 2010Google Scholar
  3. 3.
    Bekka, N., Zaïm, M.E.H., Bernard, N., Trichet, D.: A novel methodology for optimal design of fractional slot with concentrated windings. IEEE Trans. Energy Convers. 31(3), 1153–1160 (2016)CrossRefGoogle Scholar
  4. 4.
    Silva, A.M., Ferreira, F.J.T.E., Falcáo, G.F., Rodrigues, M.: Novel method to minimize the air-gap MMF spatial harmonic content in three-phase windings. In: 2018 XIII International Conference on Electrical Machines (ICEM), pp. 2504–2510, September 2018Google Scholar
  5. 5.
    Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1980–1987, June 2004Google Scholar
  6. 6.
    Salvatore, N., Caponio, A., Neri, F., Stasi, S., Cascella, G.L.: Optimization of delayed-state kalman-filter-based algorithm via differential evolution for sensorless control of induction motors. IEEE Trans. Industr. Electron. 57(1), 385–394 (2010)CrossRefGoogle Scholar
  7. 7.
    Pan, X., Zhu, J., Chen, H., Chen, X., Hu, K.: A differential evolution-based hybrid NSGA-II for multi-objective optimization. In: 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 81–86 (2015)Google Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach. NCS. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-31306-0CrossRefzbMATHGoogle Scholar
  10. 10.
    Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)CrossRefGoogle Scholar
  11. 11.
    Sarker, R., Coello Coello, C.A.: Assessment Methodologies for Multiobjective Evolutionary Algorithms, vol. 48, pp. 177–195. Springer, Boston (2002).  https://doi.org/10.1007/0-306-48041-7_7
  12. 12.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  13. 13.
    Riquelme, N., Lücken, C.V., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11, October 2015Google Scholar
  14. 14.
    Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature – PPSN IV, pp. 584–593. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61723-X_1022CrossRefGoogle Scholar
  15. 15.
    Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 392–403 (1998)CrossRefGoogle Scholar
  16. 16.
    Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: amosa. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ISR Coimbra, DEECUniversity of CoimbraCoimbraPortugal
  2. 2.INESC Coimbra, DEECUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Electrical and Computer EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations