Introducing Weighted Intermediate Recombination in On-Line Collective Robotics, the (\(\mu /\mu _{\mathrm {W}},1\))-On-line EEA

  • Amine BoumazaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)


Weighted intermediate recombination has been proven very useful in evolution strategies. We propose here to use it in the case of on-line embodied evolutionary algorithms. With this recombination scheme, solutions at the local populations are recombined using a weighted average that favors fitter solutions to produce a new solution. We describe the newly proposed algorithm which we dubbed (\(\mu /\mu _{\mathrm {W}},1\))-On-line EEA, and assess it performance on two swarm robotics benchmarks while comparing the results to other existing algorithms. The experiments show that the recombination scheme is very beneficial on these problems.


On-line embodied EA Swarm robotics Weighted intermediate recombination 


  1. 1.
    Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Frontiers Robot. AI 5, 12 (2018)CrossRefGoogle Scholar
  2. 2.
    Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39, 1–18 (2002)CrossRefGoogle Scholar
  3. 3.
    Beyer, H.G.: Toward a theory of evolution strategies: on the benefits of sex - the \((\mu /\mu,\lambda )\) theory. Evol. Comput. 3(1), 81–111 (1995)CrossRefGoogle Scholar
  4. 4.
    Arnold, D.V.: Noisy Optimization with Evolution Strategies. Springer, New York (2002). Scholar
  5. 5.
    Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board evolutionary robotics. In: Proceedings of GECCO 2011, pp. 171–178. ACM (2011)Google Scholar
  6. 6.
    Schaffer, D.J., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Proceedings of COGANN 1992, pp. 1–37 (1992)Google Scholar
  7. 7.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  8. 8.
    Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: an algorithm for distributed online, onboard evolution of robot behaviours. In: Artificial Life. vol. 13, pp. 251–258. MIT Press (2012)Google Scholar
  9. 9.
    Fernández Pèrez, I.n., Boumaza, A., Charpillet, F.: Decentralized innovation marking for neural controllers in embodied evolution. In: Proceedings of GECCO 2015, pp. 161–168. ACM, Madrid (2015)Google Scholar
  10. 10.
    Bredeche, N., Montanier, J.-M.: Environment-driven embodied evolution in a population of autonomous agents. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010). Scholar
  11. 11.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)CrossRefGoogle Scholar
  12. 12.
    Bredeche, N., Montanier, J.M., Weel, B., Haasdijk, E.: Roborobo! A fast robot simulator for swarm and collective robotics. CoRR abs/1304.2888 (2013)Google Scholar
  13. 13.
    Fernández Pèrez, I.n., Boumaza, A., Charpillet, F.: Comparison of selection methods in on-line distributed evolutionary robotics. In: Proceedings of ALIFE 2014, pp. 282–289. MIT Press, New York (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations