Advertisement

A Matheuristic for Green and Robust 5G Virtual Network Function Placement

  • Thomas Bauschert
  • Fabio D’AndreagiovanniEmail author
  • Andreas Kassler
  • Chenghao Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

We investigate the problem of optimally placing virtual network functions in 5G-based virtualized infrastructures according to a green paradigm that pursues energy-efficiency. This optimization problem can be modelled as an articulated 0-1 Linear Program based on a flow model. Since the problem can prove hard to be solved by a state-of-the-art optimization software, even for instances of moderate size, we propose a new fast matheuristic for its solution. Preliminary computational tests on a set of realistic instances return encouraging results, showing that our algorithm can find better solutions in considerably less time than a state-of-the-art solver.

Keywords

5G Virtual Network Function Traffic uncertainty Robust Optimization Matheuristic 

References

  1. 1.
    Larsson, C.: 5G Networks - Planning, Design and Optimization. Academic Press, Cambridge (2018)Google Scholar
  2. 2.
    Abdelwahab, S., Hamdaoui, B., Guizani, M., Znati, T.: Network function virtualization in 5G. IEEE Commun. Mag. 54(4), 84–91 (2016)CrossRefGoogle Scholar
  3. 3.
    Herrera, J., Botero, J.: Resource allocation in NFV: a comprehensive survey. IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)CrossRefGoogle Scholar
  4. 4.
    Baumgartner, A., Bauschert, T., D’Andreagiovanni, F., Reddy, V.S.: Towards robust network slice design under correlated demand uncertainties. In: IEEE International Conference on Communications (ICC), pp. 1–7 (2018)Google Scholar
  5. 5.
    Luizelli, M.C., Bays, L.R., Buriol, L.S., Barcellos, M.P., Gaspary, L.P.: Piecing together the NFV provisioning puzzle: efficient placement and chaining of virtual network functions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 98–106 (2015)Google Scholar
  6. 6.
    Marotta, A., D’Andreagiovanni, F., Kassler, A., Zola, E.: On the energy cost of robustness for green virtual network function placement in 5G virtualized infrastructures. Comput. Netw. 125, 64–75 (2017)CrossRefGoogle Scholar
  7. 7.
    Mechtri, M., Ghribi, C., Zeghlache, D.: A scalable algorithm for the placement of service function chains. IEEE Trans. Netw. Serv. Manage. 13(3), 533–546 (2016)CrossRefGoogle Scholar
  8. 8.
    Marotta, A., Zola, E., D’Andreagiovanni, F., Kassler, A.: A fast robust approach for green virtual network functions deployment. J. Netw. Comput. Appl. 95, 42–53 (2017)CrossRefGoogle Scholar
  9. 9.
    Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft. Comput. 11, 4135–4151 (2011)CrossRefGoogle Scholar
  10. 10.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
  11. 11.
    Bauschert, T., Büsing, C., D’Andreagiovanni, F., Koster, A.M.C.A., Kutschka, M., Steglich, U.: Network planning under demand uncertainty with robust optimization. IEEE Commun. Mag. 52, 178–185 (2014)CrossRefGoogle Scholar
  12. 12.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Goldberg, D.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading (1988)Google Scholar
  15. 15.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102, 71–90 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Bauschert
    • 1
  • Fabio D’Andreagiovanni
    • 2
    • 3
    Email author
  • Andreas Kassler
    • 4
  • Chenghao Wang
    • 3
  1. 1.Chair of Communication NetworksTechnische Universität ChemnitzChemnitzGermany
  2. 2.French National Center for Scientific Research (CNRS)ParisFrance
  3. 3.Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253, CS 60319CompiègneFrance
  4. 4.Karlstad UniversityKarlstadSweden

Personalised recommendations