Advertisement

Exploring Concurrent and Stateless Evolutionary Algorithms

  • Juan J. MereloEmail author
  • J. L. J. Laredo
  • Pedro A. Castillo
  • José-Mario García-Valdez
  • Sergio Rojas-Galeano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

Creating a concurrent and stateless version of an evolutionary algorithm implies changes in its algorithmic model. From the performance point of view, the main challenge is to balance computation with communication, but from the evolutionary point of view another challenge is to keep diversity high so that the algorithm is not stuck in local minima. In a concurrent setting, we will have to find the right balance so that improvements in both facets do not cancel out. In this paper we address such an issue, by exploring the space of parameters of a population based concurrent evolutionary algorithm that yields to find out the best combination for a particular problem.

Keywords

Concurrent algorithms Distributed computing Stateless algorithms Algorithm implementation Performance evaluation 

Notes

Acknowledgements

This paper has been supported in part by projects TIN2014-56494-C4-3-P s (Spanish Ministry of Economy and Competitiveness), DeepBio (TIN2017-85727-C4-2-P) and AMED (co-funded by European Regional Development Fund and the region Normandy). I would like to express my gratefulness to the users in the #perl6 IRC channel, specially Elizabeth Mattijsen, Timo Paulsen and Zoffix Znet, who helped us with the adventure of programming efficient concurrent evolutionary algorithms.

References

  1. 1.
    Andrews, G.R.: Concurrent Programming: Principles and Practice. Benjamin/Cummings Publishing Company, San Francisco (1991)zbMATHGoogle Scholar
  2. 2.
    Schippers, H., Van Cutsem, T., Marr, S., Haupt, M., Hirschfeld, R.: Towards an actor-based concurrent machine model. In: Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of Object-Oriented Languages and Programming Systems, pp. 4–9. ACM (2009)Google Scholar
  3. 3.
    Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978).  https://doi.org/10.1145/359576.359585CrossRefzbMATHGoogle Scholar
  4. 4.
    Lenz, M.: Perl 6 Fundamentals. Apress, Berkeley (2017).  https://doi.org/10.1007/978-1-4842-2899-9CrossRefGoogle Scholar
  5. 5.
    Li, X., Liu, K., Ma, L., Li, H.: A concurrent-hybrid evolutionary algorithms with multi-child differential evolution and guotao algorithm based on cultural algorithm framework. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 123–133. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16493-4_13CrossRefGoogle Scholar
  6. 6.
    Jiménez-Laredo, J.L., Eiben, A.E., van Steen, M., Merelo-Guervós, J.J.: EvAg: a scalable peer-to-peer evolutionary algorithm. Genet. Program. Evolvable Mach. 11(2), 227–246 (2010)CrossRefGoogle Scholar
  7. 7.
    Laredo, J., Castillo, P., Mora, A., Merelo, J.: Exploring population structures for locally concurrent and massively parallel evolutionary algorithms. In: WCCI 2008 Proceedings, pp. 2610–2617. IEEE Press (2008). http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_2610.pdf
  8. 8.
    Laredo, J.L.J., Bouvry, P., Mostaghim, S., Merelo-Guervós, J.-J.: Validating a peer-to-peer evolutionary algorithm. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 436–445. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29178-4_44CrossRefGoogle Scholar
  9. 9.
    Tagawa, K.: Concurrent differential evolution based on generational model for multi-core CPUs. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 12–21. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34859-4_2CrossRefGoogle Scholar
  10. 10.
    Kerdprasop, K., Kerdprasop, N.: Concurrent computation for genetic algorithms. In: Proceedings of the 1st International Conference on Software Technology, pp. 79–84 (2012)Google Scholar
  11. 11.
    Merelo, J.J., García-Valdez, J.M.: Mapping evolutionary algorithms to a reactive, stateless architecture: using a modern concurrent language. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 1870–1877. ACM, New York (2018).  https://doi.org/10.1145/3205651.3208317
  12. 12.
    García-Valdez, J.M., Merelo-Guervós, J.J.: A modern, event-based architecture for distributed evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, pp. 233–234. ACM, New York (2018).  https://doi.org/10.1145/3205651.3205719
  13. 13.
    Merelo, J.J., García-Valdez, J.-M.: Going stateless in concurrent evolutionary algorithms. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 17–29. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00350-0_2CrossRefGoogle Scholar
  14. 14.
    Cantú-Paz, E.: Migration policies and takeover times in genetic algorithms. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, GECCO 1999, vol. 1, 775 p. Morgan Kaufmann Publishers Inc., San Francisco (1999). http://dl.acm.org/citation.cfm?id=2933923.2934003

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan J. Merelo
    • 1
    Email author
  • J. L. J. Laredo
    • 2
  • Pedro A. Castillo
    • 1
  • José-Mario García-Valdez
    • 3
  • Sergio Rojas-Galeano
    • 4
  1. 1.Universidad de Granada/CITICGranadaSpain
  2. 2.RI2C-LITISUniversité du Havre NormandieLe HavreFrance
  3. 3.Instituto Tecnológico de TijuanaTijuanaMexico
  4. 4.School of EngineeringUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations