Advertisement

Self-sustainability Challenges of Plants Colonization Strategies in Virtual 3D Environments

  • Kevin Godin-DuboisEmail author
  • Sylvain Cussat-Blanc
  • Yves Duthen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

The Biosphere is a bountiful source of inspiration for the biologically inclined scientist, though one may be seized by the twists and turns of its complexity. Artificial Life emerged from the conundrum of condensing this overwhelming intricacy into a tractable volume of data.

To tackle the distant challenge of studying the long-term dynamics of artificial ecosystems, we focused in this work our efforts on plant-plant interactions in a simplified 3D setting. Through an extension of K. Sims’ directed graphs, we devised a polyvalent genotype for artificial plants development. These individuals compete and collaborate with one another in a shared plot of earth subjected to dynamically changing environmental conditions. We illustrate and analyze how the use of multi-objective fitnesses generated a panel of diverse morphologies and strategies. Furthermore, we identify two driving forces of the emerge of self-reproduction and investigate their effect on self-sustainability.

Keywords

Artificial plants Ecosystems Autonomous reproduction Self-sustainability 

Notes

Acknowledgments

This work was performed using HPC resources from CALMIP (Grant P16043) and the Bullet Physics SDK http://bulletphysics.org.

References

  1. 1.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. The Virtual Laboratory, vol. 54. Springer, New York (1990).  https://doi.org/10.1007/978-1-4613-8476-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Bornhofen, S., Barot, S., Lattaud, C.: The evolution of CSR life-history strategies in a plant model with explicit physiology and architecture. Ecol. Model. 222(1), 1–10 (2011)CrossRefGoogle Scholar
  3. 3.
    Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Comput. Graphics (Pergamon) 25(6), 1041–1048 (2001)CrossRefGoogle Scholar
  4. 4.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  5. 5.
    Joachimczak, M., Wróbel, B.: Evo-devo in silico-a model of a gene network regulating multicellular development in 3D space with artificial physics. In: Alife, pp. 297–304 (2008)Google Scholar
  6. 6.
    Disset, J., Cussat-Blanc, S., Duthen, Y.: Evolved development strategies of artificial multicellular organisms. In: 15th International Symposium on the Synthesis and Simulation of Living Systems (ALIFE XV 2016), pp. 1–8. The MIT Press, Cancun (2016). https://hal.archives-ouvertes.fr/hal-01511892
  7. 7.
    Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223, 120–123 (1970)CrossRefGoogle Scholar
  8. 8.
    Adami, C., Brown, T., Kellogg, W.K.: Evolutionary learning in the 2D artificial life system Avida. In: Artificial Life IV. MIT Press (1994)Google Scholar
  9. 9.
    Metivier, M., Lattaud, C., Heudin, J.c.: A stress-based speciation model in LifeDrop characters. In: Artificial Life (2002). http://www.alife.org/alife8/proceedings/sub265.pdf
  10. 10.
    Ventrella, J.: GenePool: exploring the interaction between natural selection and sexual selection. In: Adamatzky, A., Komosinski, M. (eds.) Artificial Life Models in Software, pp. 81–96. Springer, London (2005).  https://doi.org/10.1007/1-84628-214-4_4CrossRefGoogle Scholar
  11. 11.
    Miconi, T.: Evosphere: evolutionary dynamics in a population of fighting virtual creatures. In: 2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 3066–3073 (2008)Google Scholar
  12. 12.
    Woodward, F.I., Williams, B.G.: Climate and plant distribution at global and local scales. Vegetatio 69(1–3), 189–197 (1987)CrossRefGoogle Scholar
  13. 13.
    Canino-koning, R., Wiser, M.J., Ofria, C.: The evolution of evolvability: changing environments promote rapid adaptation in digital organisms. In: Proceedings of the European Conference on Artificial Life, pp. 268–275 (2016). https://www.mitpressjournals.org/doi/abs/10.1162/ecal_a_0047
  14. 14.
    Dubois, K., Cussat-Blanc, S., Duthen, Y.: Towards an artificial polytrophic ecosystem. In: Morphogenetic Engineering Workshop, at the European Conference on Artificial Life (ECAL) 4 September 2017 (2017). http://doursat.free.fr/docs/MEW2017_program_and_abstracts.pdf#page=4
  15. 15.
    Bonfim, D.M., de Castro, L.N.: FranksTree: a genetic programming approach to evolve derived bracketed L-systems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) Advances in Natural Computation, pp. 1275–1278. Springer, Heidelberg (2005).  https://doi.org/10.1007/11539087_168CrossRefGoogle Scholar
  16. 16.
    Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Artificial Life (2008). http://eplex.cs.ucf.edu/papers/lehman_alife08.pdf
  17. 17.
    Grime, J.P.: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111(982), 1169–1194 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kevin Godin-Dubois
    • 1
    Email author
  • Sylvain Cussat-Blanc
    • 1
  • Yves Duthen
    • 1
  1. 1.University of Toulouse, IRIT - CNRS UMR 5505ToulouseFrance

Personalised recommendations