Advertisement

A Biased Random Key Genetic Algorithm with Local Search Chains for Molecular Docking

  • Pablo F. Leonhart
  • Márcio DornEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

Molecular Docking is an essential tool in drug discovery. The procedure for finding the best energy affinity between ligand-receptor molecules is a computationally expensive optimization process because of the roughness of the search space and the thousands of possible conformations of ligand. In this way, besides a realistic energy function to evaluate possible solutions, a robust search method must be applied to avoid local minimums. Recently, many algorithms have been proposed to solve the docking problem, mainly based on Evolutionary Strategies. However, the question remained unsolved and its needed the development of new and efficient techniques. In this paper, we developed a Biased Random Key Genetic Algorithm, as global search procedure, hybridized with three variations of Hill-climbing and a Simulated Annealing version, as local search strategies. To evaluate the receptor-ligand binding affinity we used the Rosetta scoring function. The proposed approaches have been tested on a benchmark of protein-ligand complexes and compared to existing tools AUTODOCK VINA, DOCKTHOR, and jMETAL. A statistical test was performed on the results, and shown that the application of local search methods provides better solutions for the molecular docking problem.

Keywords

Structural Bioinformatics Molecular Docking Memetic Algorithms Local Search Chains 

Notes

Acknowledgements

This work was supported by grants from FAPERGS [16/2551-0000520-6], MCT/CNPq [311022/2015-4; 311611/2018-4], CAPES-STIC AMSUD [88887.135130/2017-01] - Brazil, Alexander von Humboldt-Stiftung (AvH) [BRA 1190826 HFST CAPES-P] - Germany. This study was financed in part by the Coordenacão de Aperfei çoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

References

  1. 1.
    López-Camacho, E., Godoy, M.J.G., Nebro, A.J., Aldana-Montes, J.F.: jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 20, 437–438 (2013)Google Scholar
  2. 2.
    García-Godoy, M.J., López-Camacho, E., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6), 10154–10183 (2015)CrossRefGoogle Scholar
  3. 3.
    Stockwell, G.R., Thornton, J.M.: Conformational diversity of ligands bound to proteins. J. Mol. Biol. 356(4), 928–944 (2006)CrossRefGoogle Scholar
  4. 4.
    Sadjad, B., Zsoldos, Z.: Toward a robust search method for the protein-drug docking problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 1120–1133 (2011)CrossRefGoogle Scholar
  5. 5.
    Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32(1), 335–373 (2003)CrossRefGoogle Scholar
  6. 6.
    Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: IEEE CEC, pp. 443–450 (2005)Google Scholar
  7. 7.
    Nebro, A., Durillo, J., García-Nieto, J., Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making, pp. 66–73 (2009)Google Scholar
  8. 8.
    Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)CrossRefGoogle Scholar
  9. 9.
    Leonhart, P.F., Spieler, E., Ligabue-Braun, R., Dorn, M.: A biased random key genetic algorithm for the protein–ligand docking problem. Soft Comput. 1–22 (2018)Google Scholar
  10. 10.
    Gray, J.J., et al.: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331(1), 281–299 (2003)CrossRefGoogle Scholar
  11. 11.
    Andrusier, N., Mashiach, E., Nussinov, R., Wolfson, H.: Principles of flexible protein-protein docking. Proteins 73(2), 271–289 (2008)CrossRefGoogle Scholar
  12. 12.
    Chaudhury, S., Lyskov, S., Gray, J.J.: PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, S.Y., Zou, X.: Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11(8), 3016 (2010)CrossRefGoogle Scholar
  14. 14.
    Lameijer, E.W., Back, T., Kok, J.N., Ijzerman, A.D.P.: Evolutionary algorithms in drug design. Nat. Comput. 4, 177–243 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rosin, C.D., Halliday, R.S., Hart, W.E., Belew, R.K.: A comparison of global and local search methods in drug docking. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 221–228. Morgan Kaufmann (1997)Google Scholar
  16. 16.
    Ruiz-Tagle, B., Villalobos-Cid, M., Dorn, M., Inostroza-Ponta, M.: Evaluating the use of local search strategies for a memetic algorithm for the protein-ligand docking problem. In: 2017 36th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–12, October 2017Google Scholar
  17. 17.
    Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Bioinf. 47(4), 409–443 (2002)CrossRefGoogle Scholar
  18. 18.
    Taylor, R., Jewsbury, P., Essex, J.: A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 16(3), 151–166 (2002)CrossRefGoogle Scholar
  19. 19.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Courier Corporation, North Chelmsford (1998)zbMATHGoogle Scholar
  20. 20.
    Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization, 1st edn. Wiley, New York (1997)zbMATHGoogle Scholar
  21. 21.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  24. 24.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)CrossRefGoogle Scholar
  25. 25.
    Gonçalves, J.F., de Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. J. Heuristics 8(6), 629–642 (2002)CrossRefGoogle Scholar
  26. 26.
    Goulart, N., de Souza, S.R., Dias, L.G.S., Noronha, T.F.: Biased random-key genetic algorithm for fiber installation in optical network optimization. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 2267–2271, June 2011Google Scholar
  27. 27.
    Molina, D., Lozano, M., Herrera, F.: Memetic algorithm with local search chaining for continuous optimization problems: a scalability test. In: ISDA 2009–9th International Conference on Intelligent Systems Design and Applications, pp. 1068–1073 (2009)Google Scholar
  28. 28.
    Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft Comput. 15(11), 2201–2220 (2011)CrossRefGoogle Scholar
  29. 29.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  30. 30.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRefGoogle Scholar
  31. 31.
    Schrödinger, LLC: The AxPyMOL molecular graphics plugin for Microsoft PowerPoint, version 1.8, November 2015Google Scholar
  32. 32.
    O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open babel: an open chemical toolbox. J. Cheminf. 3(1), 1–14 (2011)CrossRefGoogle Scholar
  33. 33.
    Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)Google Scholar
  34. 34.
    de Magalhães, C.S., Almeida, D.M., Barbosa, H.J.C., Dardenne, L.E.: A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 289, 206–224 (2014)CrossRefGoogle Scholar
  35. 35.
    Durillo, J., Nebro, A.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)CrossRefGoogle Scholar
  36. 36.
    Dunn, O.J.: Multiple comparisons using rank sums. Technometrics 6(3), 241–252 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of InformaticsFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations