Advertisement

Optimizing the C Index Using a Canonical Genetic Algorithm

  • Thomas A. RunklerEmail author
  • James C. Bezdek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

Clustering is an important family of unsupervised machine learning methods. Cluster validity indices are widely used to assess the quality of obtained clustering results. The C index is one of the most popular cluster validity indices. This paper shows that the C index can be used not only to validate but also to actually find clusters. This leads to difficult discrete optimization problems which can be approximately solved by a canonical genetic algorithm. Numerical experiments compare this novel approach to the well-known c-means and single linkage clustering algorithms. For all five considered popular real-world benchmark data sets the proposed method yields a better C index than any of the other (pure) clustering methods.

Keywords

Cluster validity c-means Single linkage C index Genetic algorithm 

References

  1. 1.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Sneath, P., Sokal, R.: Numerical Taxonomy. Freeman, San Francisco (1973)zbMATHGoogle Scholar
  4. 4.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, vol. 14, pp. 281–297 (1967)Google Scholar
  5. 5.
    Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., de Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 39(2), 133–155 (2009)CrossRefGoogle Scholar
  6. 6.
    Handl, J., Knowles, J., Dorigo, M.: Strategies for the increased robustness of ant-based clustering. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 90–104. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24701-2_7CrossRefGoogle Scholar
  7. 7.
    Kanade, P.M., Hall, L.O.: Fuzzy ants as a clustering concept. In: NAFIPS International Conference, Chicago, pp. 227–232, July 2003Google Scholar
  8. 8.
    Ji, C., Zhang, Y., Gao, S., Yuan, P., Li, Z.: Particle swarm optimization for mobile ad hoc networks clustering. In: International Conference on Networking, Sensing and Control, Taipeh, Taiwan, pp. 372–375, March 2004Google Scholar
  9. 9.
    Omran, M.G.H., Salman, A., Engelbrecht, A.P.: Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal. Appl. 8(4), 332 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tillett, J., Rao, R., Sahin, F., Rao, T.M.: Particle swarm optimization for the clustering of wireless sensors. Digit. Wirel. Commun. 5100, 73–83 (2003)Google Scholar
  11. 11.
    Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene clustering using self-organizing maps and particle swarm optimization. In: International Parallel and Distributed Processing Symposium, Nice, France, April 2003Google Scholar
  12. 12.
    Dalrymple-Alford, E.C.: Measurement of clustering in free recall. Psychol. Bull. 74(1), 32 (1970)CrossRefGoogle Scholar
  13. 13.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefGoogle Scholar
  14. 14.
    Hubert, L.J., Levin, J.R.: A general statistical framework for assessing categorical clustering in free recall. Psychol. Bull. 83(6), 1072 (1976)CrossRefGoogle Scholar
  15. 15.
    Bezdek, J.C., Moshtaghi, M., Runkler, T.A., Leckie, C.: The generalized C index for (internal) fuzzy cluster validity. IEEE Trans. Fuzzy Syst. 24(6), 1500–1512 (2017)CrossRefGoogle Scholar
  16. 16.
    Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rathore, P., Ghafoori, Z., Bezdek, J.C., Palaniswami, M., Leckie, C.: Approximating Dunn’s cluster validity indices for partitions of big data. IEEE Trans. Cybern. 9, 1–13 (2019)Google Scholar
  18. 18.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1 2, 224–227 (1979)CrossRefGoogle Scholar
  19. 19.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  20. 20.
    Ibrahim, O.A., Keller, J.M., Bezdek, J.C.: Analysis of streaming clustering using an incremental validity index. In: IEEE International Conference on Fuzzy Systems, Rio de Janeiro, Brazil, pp. 1–8 (2018)Google Scholar
  21. 21.
    Moshtaghi, M., Bezdek, J.C., Erfani, S.M., Leckie, C., Bailey, J.: Online cluster validity indices for performance monitoring of streaming data clustering. Int. J. Intell. Syst. 34, 541–563 (2019)CrossRefGoogle Scholar
  22. 22.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  23. 23.
    Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  24. 24.
    Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)CrossRefGoogle Scholar
  25. 25.
    Brucker, P.: On the complexity of clustering problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research. LNE, vol. 157, pp. 45–54. Springer, Heidelberg (1978).  https://doi.org/10.1007/978-3-642-95322-4_5CrossRefGoogle Scholar
  26. 26.
    Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11(4), 351–368 (2003)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Runkler, T.A., Bezdek, J.C., Hall, L.O.: Clustering very large data sets: The complexity of the fuzzy c-means algorithm. In: European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, Albufeira, Portugal, pp. 420–425, September 2002Google Scholar
  28. 28.
    Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)Google Scholar
  29. 29.
    Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recogn. Lett. 11(9), 589–594 (1990)CrossRefGoogle Scholar
  30. 30.
    Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(3), 433–439 (1999)CrossRefGoogle Scholar
  31. 31.
    Chen, C.Y., Ye, F.: Particle swarm optimization and its application to clustering analysis. In: International Conference on Networking, Sensing and Control, Taipeh, Taiwan, pp. 789–794, March 2004Google Scholar
  32. 32.
    Cui, X., Potok, T.E., Palathingal, P.: Document clustering using particle swarm optimization. In: IEEE Swarm Intelligence Symposium, Pasadena, pp. 185–191, June 2005Google Scholar
  33. 33.
    Runkler, T.A., Katz, C.: Fuzzy clustering by particle swarm optimization. In: IEEE International Conference on Fuzzy Systems, Vancouver, pp. 3065–3072, July 2006Google Scholar
  34. 34.
    van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. IEEE Congr. Evol. Comput. 1, 215–220 (2003)Google Scholar
  35. 35.
    Runkler, T.A.: Ant colony optimization of clustering models. Int. J. Intell. Syst. 20(12), 1233–1261 (2005)CrossRefGoogle Scholar
  36. 36.
    Runkler, T.A.: Wasp swarm optimization of the c-means clustering model. Int. J. Intell. Syst. 23(3), 269–285 (2008)CrossRefGoogle Scholar
  37. 37.
    Tambouratzis, G., Tambouratzis, T., Tambouratzis, D.: Clustering with artificial neural networks and traditional techniques. Int. J. Intell. Syst. 18(4), 405–428 (2003)CrossRefGoogle Scholar
  38. 38.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefGoogle Scholar
  39. 39.
    Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)CrossRefGoogle Scholar
  40. 40.
    Davé, R.N.: Characterization and detection of noise in clustering. Pattern Recogn. Lett. 12, 657–664 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Siemens AG, Corporate TechnologyMunichGermany
  2. 2.University of MelbourneParkvilleAustralia

Personalised recommendations