Evolutionary Algorithms for the Design of Quantum Protocols

  • Walter Krawec
  • Stjepan Picek
  • Domagoj JakobovicEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)


In this paper, we use evolutionary algorithm to evolve customized quantum key distribution (QKD) protocols designed to counter attacks against the system in order to optimize the speed of the secure communication. This is in contrast to most work in QKD protocols, where a fixed protocol is designed and then its security is analyzed to determine how strong an attack it can withstand. We show that our system is able to find protocols that can operate securely against attacks where ordinary QKD protocols would fail. Our algorithm evolves protocols as quantum circuits, thus making the end result potentially easier to implement in practice.


Quantum cryptography Evolution strategy Quantum simulator 


  1. 1.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, vol. 175 (1984)Google Scholar
  3. 3.
    Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72 (2005).
  4. 4.
    Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers, Boston (2004)zbMATHGoogle Scholar
  5. 5.
    Wang, X., Jiao, L., Li, Y., Qi, Y., Wu, J.: A variable-length chromosome evolutionary algorithm for reversible circuit synthesis. J. Multiple Valued Log. Soft Comput. 25(6), 643–671 (2015)MathSciNetGoogle Scholar
  6. 6.
    Abubakar, M.Y., Jung, L.T., Zakaria, N., Younes, A., Abdel-Aty, A.-H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16(6), 160 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rylander, B., Soule, T., Foster, J., Alves-Foss, J.: Quantum evolutionary programming. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 1005–1011. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  8. 8.
    Picek, S., Golub, M.: On evolutionary computation methods in cryptography. In: Proceedings of the 34th International Convention MIPRO, pp. 1496–1501. IEEE (2011)Google Scholar
  9. 9.
    Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving s-boxes based on cellular automata with genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 251–252. ACM (2017)Google Scholar
  10. 10.
    Krawec, W.O.: A genetic algorithm to analyze the security of quantum cryptographic protocols. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2098–2105. IEEE (2016)Google Scholar
  11. 11.
    Krawec, W.O., Nelson, M.G., Geiss, E.P.: Automatic generation of optimal quantum key distribution protocols. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1153–1160. ACM (2017)Google Scholar
  12. 12.
    Rubinstein, B.I.P.: Evolving quantum circuits using genetic programming. In: Proceedings of the Congress on Evolutionary Computation, pp. 144–151. IEEE (2001)Google Scholar
  13. 13.
    Spector, L., Klein, J.: Machine invention of quantum computing circuits by means of genetic programming. AI EDAM 22(3), 275–283 (2008)Google Scholar
  14. 14.
    Bae, J., Acín, A.: Key distillation from quantum channels using two-way communication protocols. Phys. Rev. A 75(1), 012334 (2007)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Christandl, M., Konig, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102 (2009).
  17. 17.
    Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2053), 207–235 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17(3), 209–241 (2017)MathSciNetGoogle Scholar
  19. 19.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Walter Krawec
    • 1
  • Stjepan Picek
    • 2
  • Domagoj Jakobovic
    • 3
    Email author
  1. 1.Department of Computer Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Cyber Security Research GroupDelft University of TechnologyDelftThe Netherlands
  3. 3.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations