Advertisement

A Comparison of Different Many-Objective Optimization Algorithms for Energy System Optimization

  • Tobias RodemannEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)

Abstract

The usage of renewable energy sources, storage devices, and flexible loads has the potential to greatly improve the overall efficiency of a building complex or factory. However, one needs to consider a multitude of upgrade options and several performance criteria. We therefore formulated this task as a many-objective optimization problem with 10 design parameters and 5 objectives (investment cost, yearly energy costs, \(CO_2\) emissions, system resilience, and battery lifetime). Our target was to investigate the variations in the outputs of different optimization algorithms. For this we tested several many-objective optimization algorithms in terms of their hypervolume performance and the practical relevance of their results. We found substantial performance variations between the algorithms, both regarding hypervolume and in the basic distribution of solutions in objective space. Also the concept of desirabilities was employed to better visualize and assess the quality of solutions found.

Keywords

Many-objective optimization Energy management Desirabilities 

References

  1. 1.
    Wagner, T., Trautmann, H.: Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions. IEEE Trans. Evol. Comput. 14(5), 688–701 (2010)CrossRefGoogle Scholar
  2. 2.
    Yang, R., Wang, L.: Multi-objective optimization for decision-making of energy and comfort management in building automation and control. Sustain. Cities Soc. 2(1), 1–7 (2012). http://www.sciencedirect.com/science/article/pii/S221067071100059X
  3. 3.
    Fadaee, M., Radzi, M.: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew. Sustain. Energy Rev. 16(5), 3364–3369 (2012). http://www.sciencedirect.com/science/article/pii/S1364032112001669
  4. 4.
    Khodr, H.M., Vale, Z.A., Ramos, C., Soares, J.P., Morais, H., Kádár, P.: Optimal methodology for renewable energy dispatching in islanded operation. In: IEEE PES T D 2010, pp. 1–7 (2010)Google Scholar
  5. 5.
    Naharudinsyah, I., Limmer, S.: Optimal charging of electric vehicles with trading on the intraday electricity market. Energies 11(6), 1416 (2018)CrossRefGoogle Scholar
  6. 6.
    Fritzson, P., Bunus, P.: Modelica – a general object-oriented language for continuous and discrete-event system modeling. In: Proceedings of the 35th Annual Simulation Symposium, pp. 14–18 (2002)Google Scholar
  7. 7.
    Unger, R., Mikoleit, B., Schwan, T., Bäker, B., Kehrer, C., Rodemann, T.: Green building - modeling renewable building energy systems with emobility using Modelica. In: Proceedings of Modelica 2012 Conference. Modelica Association, Munich, Germany (2012)Google Scholar
  8. 8.
    Rodemann, T.: A many-objective configuration optimization for building energy management. In: Proceedings of IEEE WCCI (CEC) (2018)Google Scholar
  9. 9.
    Ogino, Y., Iida, R., Rodemann, T.: Using desirability functions for many-objective optimization of a hybrid car controller. In: GECCO 2017 Conference Companion (2017)Google Scholar
  10. 10.
    Cheng, R., Rodemann, T., Fischer, M., Olhofer, M., Jin, Y.: Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation. IEEE Trans. Emerg. Top. Comput. Intell. 1(2), 97–111 (2017)CrossRefGoogle Scholar
  11. 11.
    Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. CoRR abs/1701.00879 (2017). http://arxiv.org/abs/1701.00879
  12. 12.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rodemann, T.: Industrial portfolio management for many-objective optimization algorithms. In: Proceedings of IEEE WCCI 2018 (CEC) (2018)Google Scholar
  14. 14.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  15. 15.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  16. 16.
    Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30217-9_84CrossRefGoogle Scholar
  18. 18.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, pp. 95–100 (2001)Google Scholar
  19. 19.
    Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)CrossRefGoogle Scholar
  20. 20.
    Kukkonen, S., Lampine, J.: GDE3: the third evolution step of generalized differential evolution. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 443–450 (2005)Google Scholar
  21. 21.
    Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 1051–1056 (2002)Google Scholar
  22. 22.
    Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. Evol. Comput. 17(4), 474–494 (2013)Google Scholar
  23. 23.
    Wang, H., Jiao, L., Yao, X.: Two Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19, 524–541 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  25. 25.
    Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)CrossRefGoogle Scholar
  26. 26.
    Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Honda Research Institute EuropeOffenbach/MainGermany

Personalised recommendations