Advertisement

Complex Network Analysis of a Genetic Programming Phenotype Network

  • Ting HuEmail author
  • Marco Tomassini
  • Wolfgang Banzhaf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11451)

Abstract

The genotype-to-phenotype mapping plays an essential role in the design of an evolutionary algorithm. Since variation occurs at the genotypic level but fitness is evaluated at the phenotypic level, this mapping determines how variations are effectively translated into quality improvements. We numerically study the redundant genotype-to-phenotype mapping of a simple Boolean linear genetic programming system. In particular, we investigate the resulting phenotypic network using tools of complex network analysis. The analysis yields a number of interesting statistics of this network, considered both as a directed as well as an undirected graph. We show by numerical simulation that less redundant phenotypes are more difficult to find as targets of a search than others that have much more genotypic abundance. We connect this observation with the fact that hard to find phenotypes tend to belong to small and almost isolated clusters in the phenotypic network.

Keywords

Complex networks Genetic programming Genotype-phenotype mapping Phenotype networks Evolvability 

Notes

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699 to T.H., and the Koza Endowment fund provided to W.B. by Michigan State University.

References

  1. 1.
    Kell, D.B.: Genotype-phenotype mapping: genes as computer programs. Trends Genet. 18(11), 555–559 (2002)CrossRefGoogle Scholar
  2. 2.
    de Visser, J.A.G.M., Krug, J.: Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014)CrossRefGoogle Scholar
  3. 3.
    Schaper, S., Louis, A.A.: The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9(2), e86635 (2014)CrossRefGoogle Scholar
  4. 4.
    Catalan, P., Wagner, A., Manrubia, S., Cuesta, J.A.: Adding levels of complexity enhances robustness and evolvability in a multilevel genotype-phenotype map. J. R. Soc. Interface 15(138), 20170516 (2018)CrossRefGoogle Scholar
  5. 5.
    Banzhaf, W.: Genotype-phenotype-mapping and neutral variation—a case study in Genetic Programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58484-6_276CrossRefGoogle Scholar
  6. 6.
    Smith, T., Husbands, P., O’Shea, M.: Neutral networks and evolvability with complex genotype-phenotype mapping. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 272–281. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44811-X_29CrossRefGoogle Scholar
  7. 7.
    Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)CrossRefGoogle Scholar
  8. 8.
    Hu, T., Banzhaf, W., Moore, J.H.: The effect of recombination on phenotypic exploration and robustness in evolution. Artif. Life 20(4), 457–470 (2014)CrossRefGoogle Scholar
  9. 9.
    Hu, T., Payne, J., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genet. Program. Evolvable Mach. 13(3), 305–337 (2012)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J., Engelhardt, R.: Effects of selective neutrality on the evolution of molecular species. Proc. R. Soc. B 265(1403), 1333–1338 (1998)CrossRefGoogle Scholar
  11. 11.
    Wagner, A.: Robustness, evolvability, and neutrality. Fed. Eur. Biochem. Soc. Lett. 579(8), 1772–1778 (2005)CrossRefGoogle Scholar
  12. 12.
    van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)CrossRefGoogle Scholar
  13. 13.
    Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156 (2006)Google Scholar
  14. 14.
    Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Proceedings of the 18th Genetic and Evolutionary Computation Conference (GECCO), pp. 963–970 (2009)Google Scholar
  15. 15.
    Hu, T., Banzhaf, W.: Neutrality, robustness, and evolvability in genetic programming. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Programming Theory and Practice XIV. GEC, pp. 101–117. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97088-2_7CrossRefGoogle Scholar
  16. 16.
    Nickerson, K.L., Chen, Y., Wang, F., Hu, T.: Measuring evolvability and accessibility using the Hyperlink-Induced Topic Search algorithm. In: Proceedings of the 27th Genetic and Evolutionary Computation Conference (GECCO), pp. 1175–1182 (2018)Google Scholar
  17. 17.
    Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Boston (2007).  https://doi.org/10.1007/978-0-387-31030-5CrossRefzbMATHGoogle Scholar
  18. 18.
    Barábasi, A.L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  19. 19.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  20. 20.
    Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, evolvability, and accessibility in linear genetic programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 13–24. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20407-4_2CrossRefGoogle Scholar
  21. 21.
    Hu, T., Banzhaf, W.: Quantitative analysis of evolvability using vertex centralities in phenotype network. In: Proceedings of the 25th Genetic and Evolutionary Computation Conference (GECCO), pp. 733–740 (2016)Google Scholar
  22. 22.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006). http://igraph.orgGoogle Scholar
  23. 23.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  24. 24.
    Masuda, N., Porter, M.A., Lambiotte, R.: Random walk and diffusion in networks. Phys. Rep. 716, 1–58 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceMemorial UniversitySt. John’sCanada
  2. 2.Faculty of Business and Economics, Information Systems DepartmentUniversity of LausanneLausanneSwitzerland
  3. 3.Department of Computer Science and Engineering, and BEACON CenterMichigan State UniversityEast LansingUSA

Personalised recommendations