Advertisement

A Crisp-Based Approach for Representing and Reasoning on Imprecise Time Intervals in OWL 2

  • Fatma GhorbelEmail author
  • Elisabeth Métais
  • Fayçal Hamdi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)

Abstract

In the Semantic Web field, representing and reasoning on imprecise temporal data is a common requirement. Several works exist to represent and reason on crisp temporal data in ontology; however, to the best of our knowledge, there is no work devoted to handle imprecise temporal data. Representing and reasoning on imprecise time intervals in OWL 2, is the problem this work is dealing with. Our approach is based only on crisp environment. First, we extend the 4D-fluents approach to represent imprecise time intervals and crisp temporal interval relations. Second, we extend the Allen’s interval algebra to propose crisp temporal relations between imprecise time intervals. We show that, unlike most related work, our temporal interval relations preserve many of the properties of the Allen’s interval algebra. Furthermore, we show how they can be used for temporal reasoning by means of a transitivity table. We experimentally infer the resulting temporal relations from the introduced imprecise time intervals via a set of SWRL rules. Finally, we illustrate the usefulness of our work in the context of the Captain Memo memory prosthesis.

Keywords

Imprecise time interval Temporal representation 4D-fluents approach Temporal reasoning Allen’s interval algebra OWL 2 

References

  1. 1.
    Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in OWL. In: Frontiers in Artificial Intelligence and Applications, pp. 226–236 (2006)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)CrossRefGoogle Scholar
  3. 3.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30, 171–210 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gomez, C., Lopez, J.R., Olive, A.: Evolving temporal conceptual schemas: the reification case. In: International Workshop on Principles of Software Evolution, pp. 78–82 (2000)Google Scholar
  5. 5.
    Klein, M., Fensel, D.: Ontology versioning on the semantic web. In: International Semantic Web Working Symposium (SWWS), pp. 75–91 (2001)Google Scholar
  6. 6.
    Hayes, P., Welty, C.: Defining N-ary relations on the semantic web. In: W3C Working Group Note (2006)Google Scholar
  7. 7.
    Batsakis, S., Petrakis, E.G.: Representing and reasoning over spatio-temporal information in OWL 2.0. In: Workshop on Semantic Web Applications and Perspectives (2010)Google Scholar
  8. 8.
    Guesgen, H.W., Hertzberg, J., Philpott, A.: Towards implementing fuzzy Allen relations. In: Workshop on Spatial and Temporal Reasoning, pp. 49–55 (1994)Google Scholar
  9. 9.
    Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man Cybern. 19, 729–744 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy temporal. J. Artif. Intell. 170(10), 872–902 (2006)CrossRefGoogle Scholar
  11. 11.
    Nagypal, G., Motik, B.: A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In: OTM Confederated International Conferences on the Move to Meaningful Internet Systems, pp. 906–923. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Ohlbach, H.: Relations between fuzzy time intervals. In: International Symposium on Temporal Representation and Reasoning, pp. 44–51. IEEE (2004)Google Scholar
  13. 13.
    Schockaert, S., De Cock, M., Kerre, E.E.: Fuzzifying Allen’s temporal interval relations. IEEE Trans. Fuzzy Syst. 16, 517–533 (2008)CrossRefGoogle Scholar
  14. 14.
    Gammoudi, A., Hadjali, A., Ben Yaghlane, B.: Fuzz-TIME: an intelligent system for fluent managing fuzzy temporal information. Int. J. Intell. Comput. Cybern. 10(2), 200–222 (2017)CrossRefGoogle Scholar
  15. 15.
    Vilain, M.B., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Readings in Qualitative Reasoning About Physical Systems, pp. 377–382 (1986)Google Scholar
  16. 16.
    Métais, E., Ghorbel, F., Herradi, N., Hamdi, F., Lammari, N., Nakache, D., Ellouze, N., Gargouri, F., Soukane, A.: Memory prosthesis. Non-Pharmacol. Ther. Dement. (2015)Google Scholar
  17. 17.
    Herradi, N., Hamdi, F., Metais, E., Ghorbel, F., Soukane, A.: PersonLink: an ontology representing family relationships for the CAPTAIN MEMO memory prosthesis. In: International Conference on Conceptual Modeling, pp. 3–13. Springer (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fatma Ghorbel
    • 1
    • 2
    Email author
  • Elisabeth Métais
    • 1
  • Fayçal Hamdi
    • 1
  1. 1.CEDRIC LaboratoryConservatoire National des Arts et Métiers (CNAM)ParisFrance
  2. 2.MIRACL LaboratoryUniversity of SfaxSfaxTunisia

Personalised recommendations