Advertisement

ipBF: A Fast and Accurate IP Address Lookup Using 3D Bloom Filter

  • Ripon PatgiriEmail author
  • Samir Kumar Borgohain
  • Sabuzima Nayak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)

Abstract

IP address lookup is a crucial part of router in Computer Network. There are millions of IP addresses to be searched per second. Hence, it is immensely necessitated to enhance the performance of the IP address lookup. Therefore, this paper presents a novel approach of IP address lookup using 3D Bloom Filter, called ipBF. ipBF inherits the properties of 3D Bloom Filter. Thus, ipBF features - (a) high accuracy, (b) low memory consumption, and (c) high performance. In addition, ipBF consumes \(8-bits\) per IP address which is very less as compared to its contemporary solution. Besides, ipBF filters the false positive probability in eight layers by deploying eight 3D Bloom Filters. Hence, ipBF is able achieve higher accuracy. We show the accuracy using theoretical calculations.

Keywords

Bloom Filter IP address lookup Router Networking 3D Bloom Filter Prefix matching 

Notes

Acknowledgement

Authors would like to acknowledge TEQIP-III, NIT Silchar for supporting this research work.

References

  1. 1.
    Almeida, P.S., Baquero, C., Preguica, N., Hutchison, D.: Scalable bloom filters. Inf. Process. Lett. 101(6), 255–261 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antikainen, M., Aura, T., Särelä, M.: Denial-of-service attacks in bloom-filter-based forwarding. IEEE/ACM Trans. Netw. 22(5), 1463–1476 (2014).  https://doi.org/10.1109/TNET.2013.2281614CrossRefGoogle Scholar
  3. 3.
    Appleby, A.: Murmur hash (2018). https://sites.google.com/site/murmurhash/. Accessed Aug 2018
  4. 4.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970).  https://doi.org/10.1145/362686.362692CrossRefzbMATHGoogle Scholar
  5. 5.
    Bringer, J., Morel, C., Rathgeb, C.: Security analysis and improvement of some biometric protected templates based on bloom filters. Image Vis. Comput. 58(Supplement C), 239–253 (2017).  https://doi.org/10.1016/j.imavis.2016.08.002CrossRefGoogle Scholar
  6. 6.
    Byun, H., Lim, H.: IP address lookup algorithm using a vectored bloom filter. Trans. Korean Inst. Electr. Eng. 65(12), 2061–2068 (2016).  https://doi.org/10.5370/kiee.2016.65.12.2061CrossRefGoogle Scholar
  7. 7.
    Calderoni, L., Palmieri, P., Maio, D.: Location privacy without mutual trust: the spatial bloom filter. Comput. Commun. 68(Supplement C), 4–16 (2015).  https://doi.org/10.1016/j.comcom.2015.06.011. Security and Privacy in Unified Communications: Challenges and SolutionsCrossRefzbMATHGoogle Scholar
  8. 8.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008).  https://doi.org/10.1145/1365815.1365816CrossRefGoogle Scholar
  9. 9.
    Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 75–88. ACM, New York (2014).  https://doi.org/10.1145/2674005.2674994
  10. 10.
    Gao, W., Nguyen, J., Wu, Y., Hatcher, W.G., Yu, W.: A bloom filter-based dual-layer routing scheme in large-scale mobile networks. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2017).  https://doi.org/10.1109/ICCCN.2017.8038405
  11. 11.
    Geravand, S., Ahmadi, M.: Bloom filter applications in network security: a state-of-the-art survey. Comput. Netw. 57(18), 4047–4064 (2013).  https://doi.org/10.1016/j.comnet.2013.09.003CrossRefGoogle Scholar
  12. 12.
    Gomez-Barrero, M., Rathgeb, C., Li, G., Ramachandra, R., Galbally, J., Busch, C.: Multi-biometric template protection based on bloom filters. Inf. Fusion 42(Supplement C), 37–50 (2018).  https://doi.org/10.1016/j.inffus.2017.10.003CrossRefGoogle Scholar
  13. 13.
    Grandi, F.: On the analysis of bloom filters. Inf. Process. Lett. 129, 35–39 (2018).  https://doi.org/10.1016/j.ipl.2017.09.004MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hua, Y., Zhu, Y., Jiang, H., Feng, D., Tian, L.: Supporting scalable and adaptive metadata management in ultralarge-scale file systems. IEEE Trans. Parallel Distrib. Syst. 22(4), 580–593 (2011)CrossRefGoogle Scholar
  15. 15.
    Huo, Z., Xiao, L., Zhong, Q., Li, S., Li, A., Rua, L., Wang, S., Fu, L.: MBFS: a parallel metadata search method based on bloomfilters using mapreduce for large-scale file systems. J. Supercomput. 72(8), 1–27 (2015)Google Scholar
  16. 16.
    Jackman, S.D., Vandervalk, B.P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S.A., Jahesh, G., Khan, H., Coombe, L., Warren, R.L., et al.: ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 27(5), 768–777 (2017)CrossRefGoogle Scholar
  17. 17.
    Kwon, M., Reviriego, P., Pontarelli, S.: A length-aware cuckoo filter for faster IP lookup. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1071–1072 (2016).  https://doi.org/10.1109/INFCOMW.2016.7562258
  18. 18.
    Lin, F., Wang, G., Zhou, J., Zhang, S., Yao, X.: High-performance IPv6 address lookup in GPU-accelerated software routers. J. Netw. Comput. Appl. 74, 1–10 (2016).  https://doi.org/10.1016/j.jnca.2016.08.004CrossRefGoogle Scholar
  19. 19.
    Lucchesi, A., Drummond, A.C., Teodoro, G.: High-performance IP lookup using Intel Xeon Phi: a bloom filters based approach. J. Internet Serv. Appl. 9(1), 3 (2018).  https://doi.org/10.1186/s13174-017-0075-yCrossRefGoogle Scholar
  20. 20.
    Maccari, L., Fantacci, R., Neira, P., Gasca, R.M.: Mesh network firewalling with bloom filters. In: 2007 IEEE International Conference on Communications, ICC 2007, pp. 1546–1551. IEEE (2007)Google Scholar
  21. 21.
    Marandi, A., Braun, T., Salamatian, K., Thomos, N.: BFR: a bloom filter-based routing approach for information-centric networks. arXiv preprint arXiv:1702.00340 (2017)
  22. 22.
    Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinform. 12(1), 333 (2011).  https://doi.org/10.1186/1471-2105-12-333CrossRefGoogle Scholar
  23. 23.
    Mun, J.H., Lim, H.: New approach for efficient IP address lookup using a bloom filter in trie-based algorithms. IEEE Trans. Comput. 65(5), 1558–1565 (2016).  https://doi.org/10.1109/TC.2015.2444850MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Patgiri, R., Nayak, S., Borgohain, S.K.: rDBF: a r-dimensional bloom filter for massive scale membership query. J. Netw. Comput. Appl. (2019). AcceptedGoogle Scholar
  25. 25.
    Sadhya, D., Singh, S.K.: Providing robust security measures to bloom filter based biometric template protection schemes. Comput. Secur. 67(Supplement C), 59–72 (2017).  https://doi.org/10.1016/j.cose.2017.02.013CrossRefGoogle Scholar
  26. 26.
    Sarela, M., Rothenberg, C.E., Aura, T., Zahemszky, A., Nikander, P., Ott, J.: Forwarding anomalies in bloom filter-based multicast. In: 2011 Proceedings IEEE INFOCOM, pp. 2399–2407 (2011).  https://doi.org/10.1109/INFCOM.2011.5935060
  27. 27.
    Sasaki, K., Nakao, A.: Packet cache network function for peer-to-peer traffic management with bloom-filter based flow classification. In: 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–6 (2016).  https://doi.org/10.1109/APNOMS.2016.7737214
  28. 28.
    Singh, A., Garg, S., Batra, S., Kumar, N., Rodrigues, J.J.: Bloom filter based optimization scheme for massive data handling in IoT environment. Future Gener. Comput. Syst. (2017).  https://doi.org/10.1016/j.future.2017.12.016
  29. 29.
    Xiao, P., Li, Z., Qi, H., Qu, W., Yu, H.: An efficient DDoS detection with bloom filter in SDN. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 1–6 (2016).  https://doi.org/10.1109/TrustCom.2016.0038
  30. 30.
    Zhu, Y., Jiang, H., Wang, J., Xian, F.: HBA: distributed metadata management for large cluster-based storage systems. IEEE Trans. Parallel Distrib. Syst. 19(6), 750–763 (2008)CrossRefGoogle Scholar
  31. 31.
    Ziegeldorf, J.H., Pennekamp, J., Hellmanns, D., Schwinger, F., Kunze, I., Henze, M., Hiller, J., Matzutt, R., Wehrle, K.: BLOOM: BLoom filter based oblivious outsourced matchings. BMC Med. Genomics 10(2), 44 (2017).  https://doi.org/10.1186/s12920-017-0277-yCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ripon Patgiri
    • 1
    Email author
  • Samir Kumar Borgohain
    • 1
  • Sabuzima Nayak
    • 1
  1. 1.National Institute of Technology SilcharSilcharIndia

Personalised recommendations