Fault Tolerant Control Using Interval Type-2 Takagi-Sugeno Fuzzy Controller for Nonlinear System

  • Himanshukumar PatelEmail author
  • Vipul Shah
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


A novel Fault Tolerant Control (FTC) strategy is proposed based on interval type-2 Takagi-Sugeno controller and conventional PID controller, in this paper it has been presented for a nonlinear system. The main advantage of this strategy is, it can handle the faults, uncertainties in describing the nonlinear systems and give rigorous fuzzy rules. This study assesses the design of the robust controller which can tolerate the system component and actuator faults into the system and maintain the performance of the system at an acceptable level. To validate the proposed FTC strategy three-tank interacting level control system is considered. Finally, the simulation of the three-tank interacting level process model demonstrates the superiority of the proposed strategy using two integral error performance index Integral Absolute Error (IAE) and Integral Square Error (ISE).


Actuator fault Interval Type-2 T-S Fuzzy logic control Nonlinear system PID controller System component fault 


  1. Boskovic, J.D., Mehra, R.K.: Failure detection, identification and reconfiguration in flight control. In: Fault Diagnosis and Fault Tolerance for Mechatronic Systems. Springer, New York (2002)Google Scholar
  2. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12, 1267–1278 (2012)CrossRefGoogle Scholar
  3. Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  4. Guerra, P., Puig, V., Witczak, M.: Robust fault detection with unknown input set-membership state estimators and interval models using zonotopes. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2006, Beijing, China, pp. 1303–1308 (2006)Google Scholar
  5. Patel, H.R., Shah, V.A.: Fault tolerant control systems: a passive approaches for single tank level control system. i-manager’s J. Instrum. Control Eng. 6(1), 11–18 (2018a)Google Scholar
  6. Patel, H.R., Shah, V.A.: Fault detection and diagnosis methods in power generation plants-the Indian power generation sector perspective: an introductory review. J. Energy Manag. 02(02), 31–49 (2018b)Google Scholar
  7. Patel, H.R., Shah, V.A.: Fuzzy logic based passive fault tolerant control strategy for a single-tank system with system fault and process disturbances. In: IEEE 5th International Conference on Electrical and Electronic Engineering (ICEEE 2018c), Istanbul, Turkey, pp. 257–262 (2018c).
  8. Patel, H.R., Shah, V.A.: A framework for fault-tolerant control for an interacting and non-interacting level control system using AI. In: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, ICINCO, vol. 1, pp. 180–190 (2018d). ISBN 978-989-758-321-6.
  9. Patel, H.R., Shah, V.A.: A fault-tolerant control strategy for non-linear system: an application to the two tank canonical non-interacting level control system. In: Proceedings of 2nd International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER 2018), Mangalore, India, 13–14 August (2018e)Google Scholar
  10. Ouyang, H., Lin, Y.: Adaptive fault-tolerant control for actuator failures: a switching strategy. Automatica 81, 87–95 (2017)MathSciNetCrossRefGoogle Scholar
  11. Yang, H., Jiang, B., Staroswiecki, M., Zhang, Y.: Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems. Automatica 54, 49–55 (2015)MathSciNetCrossRefGoogle Scholar
  12. Yang, H., Staroswiecki, M., Jiang, B., Liu, J.: Fault tolerant cooperative control for a class of nonlinear multi-agent systems. Syst. Control Lett. 60(4), 271–277 (2011)MathSciNetCrossRefGoogle Scholar
  13. Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179, 2175–2193 (2009)CrossRefGoogle Scholar
  14. Korbicz, J., Kościelny, J., Kowalczuk, Z., Choleva, W.: Fault Diagnosis: Models, Artificial Intelligence, Applications, p. 920. Springer, Berlin (2004)CrossRefGoogle Scholar
  15. Karnik, N., Mendel, J.: Introduction to type-2 fuzzy logic systems. In: Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, vol. 2, pp. 915–920 (1998)Google Scholar
  16. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  17. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2011)zbMATHGoogle Scholar
  18. Martínez, R., Castillo, O., Aguilar, L.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)CrossRefGoogle Scholar
  19. Noura, H., Theilliol, D., Ponsart, J., Chamssedine, A.: Fault-tolerant control systems: design and practical applications. In: Advances in Industrial Control. Springer, London (2009)Google Scholar
  20. Nandola, N., Bhartiya, S.: A multiple model approach for the predictive control of nonlinear hybrid system. J. Process Control 18, 131–148 (2008)CrossRefGoogle Scholar
  21. Puig, V.: Fault diagnosis and fault tolerant control using set-membership approaches: application to real case studies. Int. J. Appl. Math. Comput. Sci. 20(4), 619–635 (2010). Scholar
  22. Patton, R.: Fault-tolerant control systems: the 1997 situation. In: Proceedings of the IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, Kingston Upon Hull, UK, pp. 1033–1054 (1997)Google Scholar
  23. Sudha, K.R., Santhi, R.V.: Robust decentralized load frequency control of interconnected power system with generation rate constraint using type-2 fuzzy approach. Int. J. Electr. Power Energy Syst. 33, 699–707 (2011)CrossRefGoogle Scholar
  24. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type- 2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 389(3), 617–628 (2008)CrossRefGoogle Scholar
  25. Wang, P.: Interval type-2 fuzzy T-S modeling for a heat exchange process on CE117 process trainer. In: Proceedings of 2011 International Conference on Modelling, Identification and Control, pp. 457–462 (2011)Google Scholar
  26. Wu, D., Tan, W.: A simplified type-2 fuzzy logic controller for real-time control. ISA Trans. 45, 503–510 (2006)CrossRefGoogle Scholar
  27. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar
  28. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  29. Yang, Y., Du, J., Liu, H., Guo, C., Abraham, A.: A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Trans. Control Syst. Technol. 22(4), 1511–1518 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Instrumentation and Control EngineeringDharmsinh Desai UniversityNadiadIndia

Personalised recommendations