Detection of Exudates from Fundus Images

  • Vasanthi SatyanandaEmail author
  • K. V. Narayanaswamy
  • Karibasappa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)


With the rapid urbanization and growth of work-oriented atmosphere, stress in one’s life is not left behind. Though stress is casually linked with mental depression and exhaustion, it also induces physical malady. Diabetes is one such ailment that is caused by stress. If the blood sugar levels are not controlled, this may result in Diabetic Retinopathy, where the blood vessels break down in the retina of the eye, leading in formation of exudates. These irregularities caused due to accumulation of leaked lipids and fats, can be witnessed in fundus images. A novel algorithm is proposed in this paper to detect exudates. The technique has been developed on MATLAB. It involves elementary concepts of image processing to detect exudates, also to eliminate optic disc. This has been tested on 60 images. This method yields an accuracy of 90%.


Exudates Diabetic Retinopathy Image processing Histogram MATLAB Labeling Optic disc Elimination Stress 


  1. 1.
    Rupanagudi, S.R., Bhat, V.G., Savarni, K.R.V.R., Bharadwaj, S., Prasuna, V.N.P.: A novel automatic low cost cutting machine-cum-3D printer using an image processing based control. In: 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, pp. 1–6 (2015)Google Scholar
  2. 2.
    Rupanagudi, S.R., et al.: A novel and secure methodology for keyless ignition and controlling an automobile using air gestures. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, pp. 1416–1422 (2016)Google Scholar
  3. 3.
    Rupanagudi, S.R., et al.: A novel video processing based cost effective smart trolley system for supermarkets using FPGA. In: 2015 International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, pp. 1–6 (2015)Google Scholar
  4. 4.
    Rupanagudi, S.R., et al.: A novel video processing based smart helmet for rear vehicle intimation & collision avoidance. In: 2015 International Conference on Computing and Network Communications (CoCoNet), Trivandrum, pp. 799–805 (2015)Google Scholar
  5. 5.
    Surwit, R.S., Schneider, M.S., Feinglos, M.N.: Stress and diabetes mellitus. Diabetes Care 15, 1413–1422 (1992). Scholar
  6. 6.
    Muftuoglu, G., Gulkilik, G.: Pars plana vitrectomy in advanced Coats’ disease. Case Rep. Ophthalmol. 2, 15–22 (2011)CrossRefGoogle Scholar
  7. 7.
    Borjas, R., Flores, W.: Developing a human prosthesis using a 3D printer in Honduras. In: 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), Tegucigalpa, pp. 1–5 (2015)Google Scholar
  8. 8.
    Yu, S., Xiao, D., Kanagasingam, Y.: Exudate detection for diabetic retinopathy with convolutional neural networks. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 1744–1747 (2017)Google Scholar
  9. 9.
    Qomariah, D.U.N., Tjandrasa, H.: Exudate detection in retinal fundus images using combination of mathematical morphology and Renyi entropy thresholding. In: 2017 11th International Conference on Information & Communication Technology and System (ICTS), Surabaya, pp. 31–36 (2017)Google Scholar
  10. 10.
    Ruba, T., Ramalakshmi, K.: Identification and segmentation of exudates using SVM classifier. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, pp. 1–6 (2015)Google Scholar
  11. 11.
    Patil, P., Shettar, P., Narayankar, P., Patil, M.: An efficient method of detecting exudates in diabetic retinopathy: using texture edge features. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, pp. 1188–1191 (2016)Google Scholar
  12. 12.
    Jadhav, A.S., Patil, P.B.: Detection of exudates for diabetic retinopathy using wavelet transform. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, pp. 568–571 (2017)Google Scholar
  13. 13.
    Kokare, P.: Wavelet based automatic exudates detection in diabetic retinopathy. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 1022–1025 (2017)Google Scholar
  14. 14.
    Nugroho, H.A., Oktoeberza, K.Z.W., Ardiyanto, I., Buana, R.L.B., Sasongko, M.B.: Automated segmentation of hard exudates based on matched filtering. In: 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), Malang, pp. 84–87 (2016)Google Scholar
  15. 15.
    Ahmed, M.S., Indira, B.: Detection of exudates from RGB fundus images using 3σ control method. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 767–770 (2017)Google Scholar
  16. 16.
    Somkuwar, A.C., Patil, T.G., Patankar, S.S., Kulkarni, J.V.: Intensity features based classification of hard exudates in retinal images. In: 2015 Annual IEEE India Conference (INDICON), New Delhi, pp. 1–5 (2015)Google Scholar
  17. 17.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB0: evaluation database and methodology for diabetic retinopathy algorithms, Technical reportGoogle Scholar
  18. 18.
    Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen A., Voutilainen R., Uusitalo, H., Kälviäinen, H., Pietilä, J.: DIARETDB1 diabetic retinopathy database and evaluation protocol, Technical reportGoogle Scholar
  19. 19.
    Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., Meriaudeau, F.: Indian Diabetic Retinopathy Image Dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3, 25 (2018)CrossRefGoogle Scholar
  20. 20.
    Decencière, E., et al.: Feedback on a publicly distributed database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014). ISSN 1854-5165CrossRefGoogle Scholar
  21. 21.
    Rupanagudi, S.R., Huddar, S., Bhat, V.G., Patil, S.S., Bhaskar, M.K.: Novel methodology for Kannada Braille to speech translation using image processing on FPGA. In: 2014 International Conference on Advances in Electrical Engineering (ICAEE), Vellore, pp. 1–6 (2014)Google Scholar
  22. 22.
    Ghosh, M., Mukhopadhyaya, S.: Cache oblivious algorithm of average filtering in image processing. In: 2012 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, pp. 149–154 (2012)Google Scholar
  23. 23.
    Komal, V., Yaduvir, S.: Enhancement of images using histogram processing techniques. Int. J. Comput. Technol. Appl. 2, 309–313 (2011)Google Scholar
  24. 24.
    Rupanagudi, S.R., et al.: A simplified approach to assist motor neuron disease patients to communicate through video oculography. In: 2018 International Conference on Communication Information and Computing Technology (ICCICT), Mumbai, pp. 1–6 (2018)Google Scholar
  25. 25.
    Hamid, H., Najmeh, S., Salehi, S.M.M.: Using morphological transforms to enhance the contrast of medical images. Egypt. J. Radiol. Nucl. Med. 46, 481–489 (2015)CrossRefGoogle Scholar
  26. 26.
    He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recognit. 70, 25–43 (2017)CrossRefGoogle Scholar
  27. 27. Measure properties of image regions - MATLAB regionprops-MathWorks India (2018). Accessed 14 Sep 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vasanthi Satyananda
    • 1
    Email author
  • K. V. Narayanaswamy
    • 2
  • Karibasappa
    • 3
  1. 1.Department of ECE, Atria Institute of TechnologyVTUBangaloreIndia
  2. 2.Atria Institute of TechnologyBangaloreIndia
  3. 3.Dayanand Sagar UniversityBangaloreIndia

Personalised recommendations