Simulation of Friction Stir Welding of Aluminium Alloy AA5052 – Tailor Welded Blanks

  • M. Arun Siddharth
  • R. PadmanabanEmail author
  • R. Vaira Vignesh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)


Tailor welded blanks (TWBs) have been utilized by automotive industries to meet the light-weighting demands. Achieving defect free joints in the TWBs of aluminum alloys is a major challenge. Friction stir welding (FSW) has been successful in producing metallurgically sound joints in identical and diverse aluminum alloys. The present work aims at developing a Finite element method, which was used to explore the maximum temperature (Tp), contact status, plastic strain (PS) and energy input (EI) varied upon tool rotation speed (TRS), shoulder diameter (SD), tool traverse speed (TTS) and thickness ratio (TR). The study explored the influence of the FSW process parameters on the responses using a hybrid model integrating the linear function and radial basis function.


FSW Thickness ratio Maximum temperature Plastic strain Contact status Energy input RBF 


  1. 1.
    Parente, M., Safdarian, R., Santos, A.D., Loureiro, A., Vilaca, P., Jorge, R.N.: A study on the formability of aluminum tailor welded blanks produced by friction stir welding. Int. J. Adv. Manuf. Technol. 83, 2129–2141 (2016)CrossRefGoogle Scholar
  2. 2.
    Maier, V., Hausöl, T., Schmidt, C.W., Böhm, W., Nguyen, H., Merklein, M., Höppel, H.W., Göken, M.: Tailored heat treated accumulative roll bonded aluminum blanks: microstructure and mechanical behavior. Metall. Mater. Trans. A 43, 3097–3107 (2012)CrossRefGoogle Scholar
  3. 3.
    Merklein, M., Johannes, M., Lechner, M., Kuppert, A.: A review on tailored blanks —Production, applications and evaluation. J. Mater. Process. Technol. 214, 151–164 (2014)CrossRefGoogle Scholar
  4. 4.
    Mishra, R.S., Ma, Z.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50, 1–78 (2005)CrossRefGoogle Scholar
  5. 5.
    Fu, R., Sun, R., Zhang, F., Liu, H.: Improvement of formation quality for friction stir welded joints. Weld. J. 91, 169–173 (2012)Google Scholar
  6. 6.
    Kinsey, B., Wu, X.: Tailor Welded Blanks for Advanced Manufacturing. Elsevier, Amsterdam (2011)Google Scholar
  7. 7.
    Zadpoor, A.A., Sinke, J., Benedictus, R., Pieters, R.: Mechanical properties and microstructure of friction stir welded tailor-made blanks. Mater. Sci. Eng., A 494, 281–290 (2008)CrossRefGoogle Scholar
  8. 8.
    Janjić, M., Vukčević, M., Mandić, V., Pavletić, D., Šibalić, N.: Microstructural evolution during friction stir welding of AlSi1MgMn alloy. Metalurgija 51, 29–33 (2012)Google Scholar
  9. 9.
    Sankar, B.R., Umamaheswarrao, P.: Modelling and optimisation of friction stir welding on AA6061 Alloy. Mater. Today Proc. 4, 7448–7456 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhao, K., Chun, B., Lee, J.: Finite element analysis of tailor-welded blanks. Finite Elem. Anal. Des. 37, 117–130 (2001)CrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Zhang, H.: Numerical studies on controlling of process parameters in friction stir welding. J. Mater. Process. Technol. 209, 241–270 (2009)CrossRefGoogle Scholar
  12. 12.
    Vignesh, R.V., Padmanaban, R., Arivarasu, M., Thirumalini, S., Gokulachandran, J., Ram, M.S.S.S.: Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. In: IOP Conference Series: Materials Science and Engineering, p. 012208. IOP Publishing, (2016)Google Scholar
  13. 13.
    Vignesh, R.V., Padmanaban, R.: Modelling of peak temperature during friction stir processing of magnesium alloy AZ91. In: IOP Conference Series: Materials Science and Engineering, p. 012019. IOP Publishing (2018)Google Scholar
  14. 14.
    Rojek, J., Hyrcza-Michalska, M., Bokota, A., Piekarska, W.: Determination of mechanical properties of the weld zone in tailor-welded blanks. Arch. Civ. Mech. Eng. 12, 156–162 (2012)Google Scholar
  15. 15.
    Padmanaban, R., Kishore, V.R., Balusamy, V.: Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Eng. 97, 854–863 (2014)CrossRefGoogle Scholar
  16. 16.
    Ramulu, P.J., Narayanan, R.G., Kailas, S.V.: Forming limit investigation of friction stir welded sheets: influence of SD and plunge depth. Int. J. Adv. Manuf. Technol. 69, 2757–2772 (2013)CrossRefGoogle Scholar
  17. 17.
    Chao, Y.J., Qi, X., Tang, W.: Heat transfer in friction stir welding—experimental and numerical studies. J. Manuf. Sci. Eng. 125, 138–145 (2003)CrossRefGoogle Scholar
  18. 18.
    Tufaro, L.N., Manzoni, I., Svoboda, H.G.: Effect of heat input on AA5052 friction stir welds characteristics. Procedia Mater. Sci. 8, 914–923 (2015)CrossRefGoogle Scholar
  19. 19.
    Vaira Vignesh, R., Padmanaban, R., Datta, M.: Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy. Tribol. Mater., Surf. Interfaces 12, 157–169 (2018)CrossRefGoogle Scholar
  20. 20.
    Ramalingam, V.V., Ramasamy, P.: Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using polynomial: radial basis function. Trans. Indian Inst. Met. 70, 2575–2589 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmrita School of Engineering, Coimbatore, Amrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations