Applications of Micro-CT Technology in Endodontics

  • Marco A. Versiani
  • Ali Keleș


Endodontics is a specialty of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Its study and practice encompass the basic and clinical sciences, including the biology of the normal pulp and the etiology, diagnosis, prevention, and treatment of diseases and injuries of the pulp and associated periradicular conditions. Recent technological advancements have allowed several methods to be successfully employed to visualize the anatomy of the human teeth, but in the last decade, nondestructive high-resolution micro-CT imaging has gained increasing popularity. This technology allows for the three-dimensional study of the root canal system and the evaluation of its influence on different procedures. Applications of micro-CT for experimental endodontology are now becoming extensive and integrated into dental education. The purpose of this chapter is to discuss the applications of micro-CT technology in endodontic research.


Dental education Endodontics Imaging Micro-CT Root canal system Technology 


  1. 1.
    AAE. Glossary of endodontics terms. 8th ed. Chicago: American Association of Endodontists; 2015.Google Scholar
  2. 2.
    Tjäderhane L. Dentin basic structure, composition, and function. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 17–30.Google Scholar
  3. 3.
    Perrini N, Versiani MA. Historical overview of the studies on root canal anatomy. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 3–16.Google Scholar
  4. 4.
    Versiani MA, Pécora JD, Sousa-Neto MD. Microcomputed tomography analysis of the root canal morphology of single-rooted mandibular canines. Int Endod J. 2013;46:800–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Mayo CV, Montgomery S, de Rio C. A computerized method for evaluating root canal morphology. J Endod. 1986;12:2–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Blašković-Šubat V, Smojver B, Marićić B, Sutalo J. A computerized method for the evaluation of root canal morphology. Int Endod J. 1995;28:290–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kato A, Ziegler A, Utsumi M, Ohno K, Takeichi T. Three-dimensional imaging of internal tooth structures: applications in dental education. J Oral Biosc. 2016;58:100–11.CrossRefGoogle Scholar
  8. 8.
    Tachibana H, Matsumoto K. Applicability of X-ray computerized tomography in endodontics. Endod Dental Traumatol. 1990;6:16–20.CrossRefGoogle Scholar
  9. 9.
    Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:510–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Elliott JC, Dover SD. X-ray microtomography. J Microsc. 1982;126:211–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Nielsen RB, Alyassin AM, Peters DD, Carnes DL, Lancaster J. Microcomputed tomography: an advanced system for detailed endodontic research. J Endod. 1995;21:561–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Rhodes JS, Ford TR, Lynch JA, Liepins PJ, Curtis RV. Micro-computed tomography: a new tool for experimental endodontology. Int Endod J. 1999;32:165–70.CrossRefGoogle Scholar
  13. 13.
    Bjørndal L, Carlsen O, Thuesen G, Darvann T, Kreiborg S. External and internal macromorphology in 3D-reconstructed maxillary molars using computerized X-ray microtomography. Int Endod J. 1999;32:3–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Peters OA, Laib A, Ruegsegger P, Barbakow F. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dent Res. 2000;79:1405–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Versiani MA, Pécora JD, Sousa-Neto MD. Root and root canal morphology of four-rooted maxillary second molars: a micro-computed tomography study. J Endod. 2012;38:977–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Topics. 2005;10:3–29.CrossRefGoogle Scholar
  17. 17.
    Weine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Vertucci F, Seelig A, Gillis R. Root canal morphology of the human maxillary second premolar. Oral Surg Oral Med Oral Pathol. 1974;38:456–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Versiani MA, Ordinola-Zapata R. Root canal anatomy: implications in biofilm disinfection. In: Chavez de Paz L, Sedgley C, Kishen A, editors. Root canal biofilms. Toronto: Springer International Publishing AG; 2015.Google Scholar
  20. 20.
    Versiani MA, Basrani B, Sousa Neto MD. The root canal anatomy in permanent dentition. 1st ed. Switzerland: Springer International Publishing; 2018.Google Scholar
  21. 21.
    Kim Y, Chang SW, Lee JK, Chen IP, Kaufman B, Jiang J, et al. A micro-computed tomography study of canal configuration of multiple-canalled mesiobuccal root of maxillary first molar. Clin Oral Investig. 2013;17:1541–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ordinola-Zapata R, Bramante CM, Villas-Boas MH, Cavenago BC, Duarte MH, Versiani MA. Morphologic micro-computed tomography analysis of mandibular premolars with three root canals. J Endod. 2013;39:1130–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Gu Y, Zhou P, Ding Y, Wang P, Ni L. Root canal morphology of permanent three-rooted mandibular first molars: Part III—An odontometric analysis. J Endod. 2011;37:485–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Versiani MA, Pécora JD, Sousa-Neto MD. The anatomy of two-rooted mandibular canines determined using micro-computed tomography. Int Endod J. 2011;44:682–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Li X, Liu N, Ye L, Nie X, Zhou X, Wen X, et al. A micro-computed tomography study of the location and curvature of the lingual canal in the mandibular first premolar with two canals originating from a single canal. J Endod. 2012;38:309–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Fan B, Yang J, Gutmann JL, Fan M. Root canal systems in mandibular first premolars with C-shaped root configurations. Part I: Microcomputed tomography mapping of the radicular groove and associated root canal cross-sections. J Endod. 2008;34:1337–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Fan B, Cheung GS, Fan M, Gutmann JL, Bian Z. C-shaped canal system in mandibular second molars: Part I--Anatomical features. J Endod. 2004;30:899–903.PubMedCrossRefGoogle Scholar
  28. 28.
    Gu Y, Zhang Y, Liao Z. Root and canal morphology of mandibular first premolars with radicular grooves. Arch Oral Biol. 2013;58:1609–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Keleș A, Keskin C. A micro-computed tomographic study of band-shaped root canal isthmuses, having their floor in the apical third of mesial roots of mandibular first molars. Int Endod J. 2018;51:240–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Keleș A, Keskin C. Apical root canal morphology of mesial roots of mandibular first molar teeth with Vertucci Type II configuration by means of micro-computed tomography. J Endod. 2017;43:481–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Leoni GB, Versiani MA, Pécora JD, Sousa-Neto MD. Micro–computed tomographic analysis of the root canal morphology of mandibular incisors. J Endod. 2014;40:710–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu N, Li X, Ye L, An J, Nie X, Liu L, et al. A micro-computed tomography study of the root canal morphology of the mandibular first premolar in a population from southwestern China. Clin Oral Investig. 2013;17:999–1007.PubMedCrossRefGoogle Scholar
  33. 33.
    Meder-Cowherd L, Williamson AE, Johnson WT, Vasilescu D, Walton R, Qian F. Apical morphology of the palatal roots of maxillary molars by using micro-computed tomography. J Endod. 2011;37:1162–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Pratt WK. Digital image processing. 2nd ed. New York: Wiley; 1991.Google Scholar
  35. 35.
    Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph. 1987;21:163–9.CrossRefGoogle Scholar
  36. 36.
    Hildebrand T, Rüegsegger P. Quantification of bone micro architecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu MK, R’Oris A, Barkis D, Wesselink PR. Prevalence and extent of long oval canals in the apical third. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:739–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Peters OA, Laib A, Gohring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27:1–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Boveda C, Kishen A. Contracted endodontic cavities: the foundation for less invasive alternatives in the management of apical periodontitis. Endod Topics. 2015;33:169–86.CrossRefGoogle Scholar
  40. 40.
    Silva EJNL, Rover G, Belladonna FG, De-Deus G, Teixeira CS, FIdalgo TKS. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2017;22:109–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Ordinola-Zapata R, Versiani MA, Bramante CM. Root canal components. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 31–46.Google Scholar
  42. 42.
    Krishan R, Paqué F, Ossareh A, Kishen A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Moore B, Verdelis K, Kishen A, Dao T, Friedman S. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod. 2016;42:1779–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Plotino G, Grande N, Isufi A, Ioppolo P, Pedullà E, Bedini R, et al. Fracture strength of endodontically treated teeth with different access cavity designs. J Endod. 2017;43:995–1000.PubMedCrossRefGoogle Scholar
  45. 45.
    Jiang Q, Huang Y, Tu X, Li Z, He Y, Yang X. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis. J Endod. 2018;44:1283–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Eaton JA, Clement DJ, Lloyd A, Marchesan MA. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars. J Endod. 2015;41:1888–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Siqueira JF Jr, Roças IN, Ricucci D. Internal tooth anatomy and root canal instrumentation. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 277–302.Google Scholar
  48. 48.
    Bier CA, Shemesh H, Tanomaru-Filho M, Wesselink PR, Wu MK. The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation. J Endod. 2009;35:236–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Shemesh H, Bier CA, Wu MK, Tanomaru-Filho M, Wesselink PR. The effects of canal preparation and filling on the incidence of dentinal defects. Int Endod J. 2009;42:208–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Versiani MA, Souza E, De-Deus G. Critical appraisal of studies on dentinal radicular microcracks in endodontics: methodological issues, contemporary concepts, and future perspectives. Endod Topics. 2015;33:87–156.CrossRefGoogle Scholar
  51. 51.
    Berman LH, Kuttler S. Fracture necrosis: diagnosis, prognosis assessment, and treatment recommendations. J Endod. 2010;36:442–6.PubMedCrossRefGoogle Scholar
  52. 52.
    De-Deus G, Belladonna FG, Marins JR, Silva EJ, Neves AA, Souza EM, et al. On the causality between dentinal defects and root canal preparation: a micro-CT assessment. Braz Dent J. 2016;27:664–9.PubMedCrossRefGoogle Scholar
  53. 53.
    De-Deus G, Belladonna FG, Souza EM, Silva EJ, Neves Ade A, Alves H, et al. Micro-computed tomographic assessment on the effect of protaper next and twisted file adaptive systems on dentinal cracks. J Endod. 2015;41:1116–9.PubMedCrossRefGoogle Scholar
  54. 54.
    De-Deus G, Cesar de Azevedo Carvalhal J, Belladonna FG, Silva E, Lopes RT, Moreira Filho RE, et al. Dentinal microcrack development after canal preparation: a longitudinal in situ micro-computed tomography study using a cadaver model. J Endod. 2017;43:1553–8.PubMedCrossRefGoogle Scholar
  55. 55.
    De-Deus G, Silva EJ, Marins J, Souza E, Neves Ade A, Goncalves Belladonna F, et al. Lack of causal relationship between dentinal microcracks and root canal preparation with reciprocation systems. J Endod. 2014;40:1447–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Gambill JM, Alder M, del Rio CE. Comparison of nickel-titanium and stainless steel hand-file instrumentation using computed tomography. J Endod. 1996;22:369–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Versiani MA, Pécora JD, Sousa-Neto MD. Flat-oval root canal preparation with self-adjusting file instrument: a micro-computed tomography study. J Endod. 2011;37:1002–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Siqueira JF Jr, Alves FRF, Versiani MA, Roças IN, Almeida BM, Neves MAS, et al. Correlative bacteriologic and micro–computed tomographic analysis of mandibular molar mesial canals prepared by Self-Adjusting File, Reciproc, and Twisted File systems. J Endod. 2013;39:1044–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Fan B, Pan Y, Gao Y, Fang F, Wu Q, Gutmann JL. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J Endod. 2010;36:1866–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular first molars in a Chinese population. J Endod. 2009;35:353–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Somma F, Leoni D, Plotino G, Grande NM, Plasschaert A. Root canal morphology of the mesiobuccal root of maxillary first molars: a micro-computed tomographic analysis. Int Endod J. 2009;42:165–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Paqué F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod. 2009;35:1044–7.PubMedCrossRefGoogle Scholar
  64. 64.
    De-Deus G, Marins J, Silva EJ, Souza E, Belladonna FG, Reis C, et al. Accumulated hard tissue debris produced during reciprocating and rotary nickel-titanium canal preparation. J Endod. 2015;41:676–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Keleş A, Alcin H, Sousa-Neto MD, Versiani MA. Supplementary steps for removing hard tissue debris from isthmus-containing canal systems. J Endod. 2016;42:1677–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Versiani MA, Alves FR, Andrade-Junior CV, Marceliano-Alves MF, Provenzano JC, Rocas IN, et al. Micro-CT evaluation of the efficacy of hard-tissue removal from the root canal and isthmus area by positive and negative pressure irrigation systems. Int Endod J. 2016;49:1079–87.PubMedCrossRefGoogle Scholar
  67. 67.
    Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J. 2011;44:148–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Versiani MA, de Deus G, Vera J, Souza E, Steier L, Pécora JD, et al. 3D mapping of the irrigated areas of the root canal space using micro-computed tomography. Clin Oral Investig. 2015;19:859–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Ørstavik D. Physical properties of root canal sealers: measurement of flow, working time, and compressive strength. Int Endod J. 1983;16:99–107.PubMedCrossRefGoogle Scholar
  70. 70.
    De-Deus G, Reis C, Beznos D, de Abranches AM, Coutinho-Filho T, Paciornik S. Limited ability of three commonly used thermoplasticized gutta-percha techniques in filling oval-shaped canals. J Endod. 2008;34:1401–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Moeller L, Wenzel A, Wegge-Larsen AM, Ding M, Kirkevang LL. Quality of root fillings performed with two root filling techniques. An in vitro study using micro-CT. Acta Odontol Scand. 2013;71:689–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Keleş A, Alcin H, Kamalak A, Versiani MA. Oval-shaped canal retreatment with self-adjusting file: a micro-computed tomography study. Clin Oral Investig. 2014;18:1147–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Keleş A, Alcin H, Kamalak A, Versiani MA. Micro-CT evaluation of root filling quality in oval-shaped canals. Int Endod J. 2014;47:1177–84.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Siqueira JF Jr. Reaction of periradicular tissues to root canal treatment: benefits and drawbacks. Endod Topics. 2005;10:123–47.CrossRefGoogle Scholar
  75. 75.
    Somma F, Cammarota G, Plotino G, Grande NM, Pameijer CH. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials. J Endod. 2008;34:466–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Keleş A, Arslan H, Kamalak A, Akcay M, Sousa-Neto MD, Versiani MA. Removal of filling materials from oval-shaped canals using laser irradiation: a micro-computed tomographic study. J Endod. 2015;41:219–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Al-Fouzan K, Al-Garawi Z, Al-Hezaimi K, Javed F, Al-Shalan T, Rotstein I. Effect of acid etching on marginal adaptation of mineral trioxide aggregate to apical dentin: microcomputed tomography and scanning electron microscopy analysis. Int J Oral Sci. 2012;4:202–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Celikten B, F Uzuntas C, I Orhan A, Tufenkci P, Misirli M, O Demiralp K, et al. Micro-CT assessment of the sealing ability of three root canal filling techniques. J Oral Sci. 2015;57:361–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Huang Y, Orhan K, Celikten B, Orhan AI, Tufenkci P, Sevimay S. Evaluation of the sealing ability of different root canal sealers: a combined SEM and micro-CT study. J Appl Oral Sci. 2018;26:e20160584.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kim SY, Kim HC, Shin SJ, Kim E. Comparison of gap volume after retrofilling using 4 different filling materials: evaluation by micro-computed tomography. J Endod. 2018;44:635–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Neves AA, Jaecques S, Van Ende A, Cardoso MV, Coutinho E, Luhrs AK, et al. 3D-microleakage assessment of adhesive interfaces: exploratory findings by μCT. Dent Mater. 2014;30:799–807.PubMedCrossRefGoogle Scholar
  82. 82.
    Zaslansky P, Fratzl P, Rack A, Wu MK, Wesselink PR, Shemesh H. Identification of root filling interfaces by microscopy and tomography methods. Int Endod J. 2011;44:395–401.PubMedCrossRefGoogle Scholar
  83. 83.
    Cavenago BC, Pereira TC, Duarte MA, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014;47:120–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Silva EJ, Perez R, Valentim RM, Belladonna FG, De-Deus GA, Lima IC, et al. Dissolution, dislocation and dimensional changes of endodontic sealers after a solubility challenge: a micro-CT approach. Int Endod J. 2017;50:407–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Evaluation of physicochemical properties of root-end filling materials using conventional and micro-CT tests. J Appl Oral Sci. 2017;25:374–80.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    De-Deus G, Scelza MZ, Neelakantan P, Sharma S, Neves Ade A, Silva EJ. Three-dimensional quantitative porosity characterization of syringe- versus hand-mixed set epoxy resin root canal sealer. Braz Dent J. 2015;26:607–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Guerrero F, Berastegui E. Porosity analysis of MTA and Biodentine cements for use in endodontics by using micro-computed tomography. J Clin Exp Dent. 2018;10:e237–e40.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Keleş A, Ahmetoglu F, Uzun I. Quality of different gutta-percha techniques when filling experimental internal resorptive cavities: a micro-computed tomography study. Aust Endod J. 2014;40:131–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim TO, Cheung GS, Lee JM, Kim BM, Hur B, Kim HC. Stress distribution of three NiTi rotary files under bending and torsional conditions using a mathematic analysis. Int Endod J. 2009;42:14–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Peters OA, Morgental RD, Schulze KA, Paqué F, Kopper PM, Vier-Pelisser FV. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action. Int Endod J. 2014;47:505–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Bonessio N, Pereira ES, Lomiento G, Arias A, Bahia MG, Buono VT, et al. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys. Int Endod J. 2015;48:441–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Kim HC, Sung SY, Ha JH, Solomonov M, Lee JM, Lee CJ, et al. Stress generation during self-adjusting file movement: minimally invasive instrumentation. J Endod. 2013;39:1572–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Santos Lde A, Bahia MG, de Las Casas EB, Buono VT. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis. J Endod. 2013;39:1444–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Keleș A, Torabinejad M, Keskin C, Sah D, Uzun I, Alçin H. Micro-CT evaluation of voids using two root filling techniques in the placement of MTA in mesial root canals of Vertucci type II configuration. Clin Oral Investig. 2018;22:1907–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Ordinola-Zapata R, Bramante CM, Duarte MA, Cavenago BC, Jaramillo D, Versiani MA. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas. J Appl Oral Sci. 2014;22:509–15.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lloyd A, Navarrete G, Marchesan MA, Clement D. Removal of calcium hydroxide from Weine Type II systems using photon-induced photoacoustic streaming, passive ultrasonic, and needle irrigation: a microcomputed tomography study. J Appl Oral Sci. 2016;24:543–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ma J, Shen Y, Yang Y, Gao Y, Wan P, Gan Y, et al. In vitro study of calcium hydroxide removal from mandibular molar root canals. J Endod. 2015;41:553–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Ikram OH, Patel S, Sauro S, Mannocci F. Micro-computed tomography of tooth tissue volume changes following endodontic procedures and post space preparation. Int Endod J. 2009;42:1071–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Schroeder AA, Ford NL, Coil JM. Micro-computed tomography analysis of post space preparation in root canals filled with carrier-based thermoplasticized gutta-percha. Int Endod J. 2017;50:293–302.PubMedCrossRefGoogle Scholar
  100. 100.
    Uzun I, Keleş A, Arslan D, Güler B, Keskin C, Gündüz K. Influence of oval and circular post placement using different resin cements on push-out bond strength and void volume analysed by micro-CT. Int Endod J. 2016;49:1175–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL, et al. Comparative accuracy of the clearing technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50:90–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Versiani MA, Sousa-Neto MD, Pécora JD. Pulp pathosis in inlayed teeth of the ancient Mayas: a microcomputed tomography study. Int Endod J. 2011;44:1000–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Kalatzis-Sousa NG, Spin-Neto R, Wenzel A, Tanomaru-Filho M, Faria G. Use of micro-computed tomography for the assessment of periapical lesions in small rodents: a systematic review. Int Endod J. 2017;50:352–66.PubMedCrossRefGoogle Scholar
  104. 104.
    Balto K, Muller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res. 2000;79:35–40.CrossRefGoogle Scholar
  105. 105.
    Chen I, Karabucak B, Wang C, Wang HG, Koyama E, Kohli MR, et al. Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material as root-end filling materials in dogs. J Endod. 2015;41:389–99.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Martins CM, Sasaki H, Hirai K, Andrada AC, Gomes-Filho JE. Relationship between hypertension and periapical lesion: an in vitro and in vivo study. Braz Oral Res. 2016;30:e78.PubMedCrossRefGoogle Scholar
  107. 107.
    Oliveira KM, Nelson-Filho P, da Silva LA, Kuchler EC, Gaton-Hernandez P, da Silva RA. Three-dimensional micro-computed tomography analyses of induced periapical lesions in transgenic mice. Ultrastruct Pathol. 2015;39:402–7.PubMedCrossRefGoogle Scholar
  108. 108.
    von Stechow D, Balto K, Stashenko P, Muller R. Three-dimensional quantitation of periradicular bone destruction by micro-computed tomography. J Endod. 2003;29:252–6.CrossRefGoogle Scholar
  109. 109.
    Basrani B, Versiani MA. Contemporary strategies for teaching internal anatomy of teeth. In: Versiani MA, Basrani B, Sousa Neto MD, editors. The root canal anatomy in permanent dentition. Switzerland: Springer International Publishing; 2018. p. 373–90.Google Scholar
  110. 110.
    Nassri MR, Carlik J, da Silva CR, Okagawa RE, Lin S. Critical analysis of artificial teeth for endodontic teaching. J Appl Oral Sci. 2008;16:43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Buchanan LS. Everything’s changed except the anatomy! Dent Today. 2012;31(100):2, 4–5.Google Scholar
  112. 112.
    Gutmann JL, Rigsby S. Meeting age old challenges in root canal procedures with contemporary technological assessments. ENDO. 2015;9:107–10.Google Scholar
  113. 113.
    Kato A, Ohno N. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing. Clin Oral Investig. 2009;13:43–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marco A. Versiani
    • 1
  • Ali Keleș
    • 2
  1. 1.Department of Oral HealthBrazilian Military PoliceMinas GeraisBrazil
  2. 2.Faculty of Dentistry, Department of EndodonticsOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations