Advertisement

Computational Intelligence for Simulating a LiDAR Sensor

Cyber-Physical and Internet-of-Things Automotive Applications
  • Fernando CastañoEmail author
  • Gerardo Beruvides
  • Alberto Villalonga
  • Rodolfo E. Haber
Chapter

Abstract

In this chapter, an overview of some of the most commonly computational intelligence techniques used to provide new capabilities to sensor networks in Cyber-Physical and Internet-of-Things environments, and for verifying and evaluating the reliability issues of sensor networks is presented. Nowadays, on-chip Light Detection and Ranging (LiDAR) concept has driven a great technological challenge into sensor networks application for Cyber-Physical and Internet-of-Things systems. Therefore, the modelling and simulation of a LiDAR sensor networks is also included in this chapter that is structured as follows. First, a brief description of the theoretical modelling of the mathematical principle of operation is outlined. Subsequently, a review of the state-of-the-art of computational intelligence techniques in sensor system simulations is explained. Likewise, a use case of applying computational intelligence techniques to LiDAR sensor networks in a Cyber-Physical System environment is presented. In this use case, a model library with four specific artificial intelligence-based methods is also designed based on sensory information database provided by the LiDAR simulation. Some of them are multi-layer perceptron neural network, a self-organization map, a support vector machine, and a k-nearest neighbour. The results demonstrate the suitability of using computational intelligence methods to increase the reliability of sensor networks when addressing the key challenges of safety and security in automotive applications.

Keywords

LiDAR model Simulation Obstacle recognition Computational intelligence Artificial intelligence Cyber-Physical Systems Internet-of-Things 

Notes

Acknowledgments

The authors wish to thank the support given by the European project IoSENSE: Flexible FE/BE Sensor Pilot Line for the Internet of Everything. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692480. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Saxony, Austria, Belgium, the Netherlands, Slovakia, and Spain.

References

  1. 1.
    A.J.C. Trappey, C.V. Trappey, U.H. Govindarajan, J.J. Sun, A.C. Chuang, A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing. IEEE Access 4, 7356–7382 (2016).  https://doi.org/10.1109/ACCESS.2016.2619360 CrossRefGoogle Scholar
  2. 2.
    X. Krasniqi, E. Hajrizi, Use of IoT technology to drive the automotive industry from connected to full autonomous vehicles. IFAC-PapersOnLine 49(29), 269–274 (2016).  https://doi.org/10.1016/j.ifacol.2016.11.078 CrossRefGoogle Scholar
  3. 3.
    J. Pajares Redondo, L. Prieto González, J. García Guzman, B.L. Boada, V. Díaz, VEHIOT: Design and evaluation of an IoT architecture based on low-cost devices to be embedded in production vehicles. Sensors 18(2), 486 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Bures, D. Weyns, M. Klein, R.E. Haber, 1st International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS 2015), in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 16-24 May 2015, (2015), pp. 1009–1010.  https://doi.org/10.1109/ICSE.2015.326 CrossRefGoogle Scholar
  5. 5.
    J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015b)CrossRefGoogle Scholar
  6. 6.
    T. Sanislav, L. Miclea, Cyber-physical systems-concept, challenges and research areas. J. Contr. Eng. Appl. Inform. 14(2), 28–33 (2012)Google Scholar
  7. 7.
    A. Bhave, B.H. Krogh, D. Garlan, B. Schmerl, View consistency in architectures for cyber-physical systems, in Proceedings of the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, (IEEE Computer Society, 2011), pp. 151–160Google Scholar
  8. 8.
    P. Gölzer, P. Cato, M. Amberg, Data Processing Requirements of Industry 4.0-Use Cases for Big Data Applications, in ECIS, (2015)Google Scholar
  9. 9.
    X. Yuan, C.J. Anumba, K.M. Parfitt, Review of the potential for a cyber-physical system approach to temporary structures monitoring. Int. J. Architect. Res. ArchNet-IJAR 9(3), 26–44 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm, E. Baccelli, A. Wolisz, Industrial wireless ip-based cyber–physical systems. Proc. IEEE 104(5), 1025–1038 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Ruan, W. Yu, Y. Yang, J. Hu, Design and realize of tire production process monitoring system based on cyber-physical systems, in 2015 International Conference on Computer Science and Mechanical Automation (CSMA), (IEEE, 2015), pp. 175–179Google Scholar
  13. 13.
    A. Iovine, F. Valentini, E. De Santis, M.D. Di Benedetto, M. Pratesi, Safe human-inspired mesoscopic hybrid automaton for autonomous vehicles. Nonlinear Anal. Hybrid Syst. 25, 192–210 (2017).  https://doi.org/10.1016/j.nahs.2016.08.008 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    D. Reiser, D. Paraforos, M. Khan, H. Griepentrog, M. Vázquez-Arellano, Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precis. Agric., 1–14 (2016)Google Scholar
  15. 15.
    X. Zhao, K. Mu, F. Hui, C. Prehofer, A cooperative vehicle-infrastructure based urban driving environment perception method using a D-S theory-based credibility map. Optik 138, 407–415 (2017).  https://doi.org/10.1016/j.ijleo.2017.03.102 CrossRefGoogle Scholar
  16. 16.
    W. Rapberger, The emergence of autonomous vehicles. Accenture (2017)Google Scholar
  17. 17.
    C.-I. Chen, R. Koseluk, C. Buchanan, A. Duerner, B. Jeppesen, H. Laux, Autonomous aerial refueling ground test demonstration—A sensor-in-the-loop, non-tracking method. Sensors 15(5), 10948–10972 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Pandey, J.R. McBride, S. Savarese, R.M. Eustice, Automatic extrinsic calibration of vision and lidar by maximizing mutual information. J. Field Robot. 32(5), 696–722 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Sim, J. Sock, K. Kwak, Indirect correspondence-based robust extrinsic calibration of LiDAR and camera. Sensors 16(6), 933 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Vivacqua, R. Vassallo, F. Martins, A low cost sensors approach for accurate vehicle localization and autonomous driving application. Sensors 17(10), 2359 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Ahmad, Reliability models for the internet of things: a paradigm shift, in Paper Presented at the 2014 IEEE International Symposium on Software Reliability Engineering Workshops, 3-6 Nov 2014, (2014)Google Scholar
  22. 22.
    L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu, T. Wu, Hybrid conditional random field based camera-LIDAR fusion for road detection. Inform. Sci. 432, 543–558 (2018b).  https://doi.org/10.1016/j.ins.2017.04.048 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Zeng, H. Yu, H. Dai, S. Song, M. Lin, B. Sun, W. Jiang, M. Meng, An Improved Calibration Method for a Rotating 2D LIDAR System. Sensors 18(2), 497 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Hu, Z. Li, Z. Zhang, D. He, M. Wimmer, Efficient tree modeling from airborne LiDAR point clouds. Comput. Graph. 67, 1–13 (2017).  https://doi.org/10.1016/j.cag.2017.04.004 CrossRefGoogle Scholar
  25. 25.
    F. Castaño, G. Beruvides, R. Haber, A. Artuñedo, Obstacle recognition based on machine learning for On-Chip LiDAR sensors in a cyber-physical system. Sensors 17(9), 2109 (2017a)CrossRefGoogle Scholar
  26. 26.
    R. Kala, 3—Perception in autonomous vehicles, in On-road intelligent vehicles, (Butterworth-Heinemann, Oxford, 2016), pp. 36–58.  https://doi.org/10.1016/B978-0-12-803729-4.00003-9 CrossRefGoogle Scholar
  27. 27.
    A. Apatean, A. Rogozan, A. Bensrhair, Visible-infrared fusion schemes for road obstacle classification. Transport. Res. Pt. C Emerg. Technol. 35, 180–192 (2013).  https://doi.org/10.1016/j.trc.2013.07.003 CrossRefGoogle Scholar
  28. 28.
    H. Taghavifar, A. Mardani, H. Karim Maslak, A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics. Energy 89, 358–364 (2015).  https://doi.org/10.1016/j.energy.2015.05.122 CrossRefGoogle Scholar
  29. 29.
    P.J. Navarro, C. Fernández, R. Borraz, D. Alonso, A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data. Sensors 17(1), 18 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Shi, L. Han, H. Yan, Adaptive clustering algorithm based on kNN and density. Pattern Recogn. Lett. 104, 37–44 (2018).  https://doi.org/10.1016/j.patrec.2018.01.020 CrossRefGoogle Scholar
  31. 31.
    S. Zhang, D. Cheng, Z. Deng, M. Zong, X. Deng, A novel kNN algorithm with data-driven k parameter computation. Pattern Recogn. Lett. (2017).  https://doi.org/10.1016/j.patrec.2017.09.036 CrossRefGoogle Scholar
  32. 32.
    D. Bein, V. Jolly, B. Kumar, S. Latifi, Reliability modeling in wireless sensor networks. Int. J. Inform. Technol. 11(2), 1–8 (2005)Google Scholar
  33. 33.
    H.M.F. AboElFotoh, S.S. Iyengar, K. Chakrabarty, Computing reliability and message delay for Cooperative wireless distributed sensor networks subject to random failures. IEEE Trans. Reliabil. 54(1), 145–155 (2005).  https://doi.org/10.1109/TR.2004.842540 CrossRefGoogle Scholar
  34. 34.
    A. Artuñedo, J. Godoy, R. Haber, J. Villagrá, Toro RMd Advanced Co-simulation Framework for Cooperative Maneuvers Among Vehicles, in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 15-18 Sept. 2015, (2015), pp. 1436–1441.  https://doi.org/10.1109/ITSC.2015.235 CrossRefGoogle Scholar
  35. 35.
    Z. Zhang, E. Eyisi, X. Koutsoukos, J. Porter, G. Karsai, J. Sztipanovits, A co-simulation framework for design of time-triggered automotive cyber physical systems. Simul. Model. Pract. Theor. 43, 16–33 (2014).  https://doi.org/10.1016/j.simpat.2014.01.001 CrossRefGoogle Scholar
  36. 36.
    F. Ferracuti, A. Freddi, A. Monteriù, M. Prist, An integrated simulation module for cyber-physical automation systems. Sensors 16(5), 645 (2016)CrossRefGoogle Scholar
  37. 37.
    I.D. de Souza, S.N. Silva, R.M. Teles, M.A. Fernandes, Platform for real-time simulation of dynamic systems and hardware-in-the-loop for control algorithms. Sensors 14(10), 19176–19199 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Mozumdar, Z.Y. Song, L. Lavagno, A.L. Sangiovanni-Vincentelli, A model-based approach for bridging virtual and physical sensor nodes in a hybrid simulation framework. Sensors 14(6), 11070–11096 (2014)CrossRefGoogle Scholar
  39. 39.
    B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, G.-I. Jee, GPS/DR error estimation for autonomous vehicle localization. Sensors 15(8), 20779–20798 (2015a)CrossRefGoogle Scholar
  40. 40.
    A.A. Al-Temeemy, The development of a 3D LADAR simulator based on a fast target impulse response generation approach. 3D Res. 8, 31 (2017).  https://doi.org/10.1007/s13319-017-0142-y CrossRefGoogle Scholar
  41. 41.
    R. Richmond, S. Cain, Direct-detection LADAR systems (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2010)CrossRefGoogle Scholar
  42. 42.
    S. Kim, I. Lee, Y. Kwon, Simulation of a Geiger-mode imaging LADAR system for performance assessment. Sensors 13(7), 8461 (2013)CrossRefGoogle Scholar
  43. 43.
    T.R. Morris Ii, Radiometric simulation of LADAR imaging for underwater environments (Universitat Politècnica de Catalunya, Barcelona, 2014)Google Scholar
  44. 44.
    T. Carlsson, O. Steinvall, D. Letalick, Signature simulation and signal analysis for 3-D laser radar (Swedish Defence Research Agency, Sweden, 2001), pp. 7–8Google Scholar
  45. 45.
    O. Svelto, D.C. Hanna, Principles of lasers, vol 4 (Springer, Berlin, 1998)CrossRefGoogle Scholar
  46. 46.
    S. Ove, C. Tomas, Three-dimensional laser radar modeling, in Proc. SPIE, (2001), pp. 23–34Google Scholar
  47. 47.
    A. Čolaković, M. Hadžialić, Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 144, 17–39 (2018).  https://doi.org/10.1016/j.comnet.2018.07.017 CrossRefGoogle Scholar
  48. 48.
    A. Gajate, R.E. Haber, J.R. Alique, P.I. Vega, Transductive-weighted neuro-fuzzy inference system for tool wear prediction in a turning process, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5572 LNAI, (2009).  https://doi.org/10.1007/978-3-642-02319-4_14 CrossRefGoogle Scholar
  49. 49.
    S. Gheisari, M.R. Meybodi, A new reasoning and learning model for Cognitive Wireless Sensor Networks based on Bayesian networks and learning automata cooperation. Comput. Netw. 124, 11–26 (2017).  https://doi.org/10.1016/j.comnet.2017.05.031 CrossRefGoogle Scholar
  50. 50.
    H. Zhang, J. Liu, A.-C. Pang, A Bayesian network model for data losses and faults in medical body sensor networks. Comput. Netw. 143, 166–175 (2018).  https://doi.org/10.1016/j.comnet.2018.07.009 CrossRefGoogle Scholar
  51. 51.
    X. Hao, L. Wang, N. Yao, D. Geng, B. Chen, Topology control game algorithm based on Markov lifetime prediction model for wireless sensor network. Ad Hoc Netw. 78, 13–23 (2018).  https://doi.org/10.1016/j.adhoc.2018.05.006 CrossRefGoogle Scholar
  52. 52.
    G. Serpen, J. Li, L. Liu, AI-WSN: Adaptive and intelligent wireless sensor network. Proc. Comput. Sci. 20, 406–413 (2013).  https://doi.org/10.1016/j.procs.2013.09.294 CrossRefGoogle Scholar
  53. 53.
    Y. Chuan, L. Chen, The application of support vector machine in the hysteresis modeling of silicon pressure sensor. IEEE Sens. J. 11(9), 2022–2026 (2011).  https://doi.org/10.1109/JSEN.2011.2109706 CrossRefGoogle Scholar
  54. 54.
    M. Nsabagwa, I. Mugume, R. Kasumba, J. Muhumuza, S. Byarugaba, E. Tumwesigye, J.S. Otim, Condition monitoring and reporting framework for wireless sensor network-based automatic weather stations, in 2018 IST-Africa Week Conference (IST-Africa), 9-11 May 2018, (2018), pp. 1–8Google Scholar
  55. 55.
    P. Chaturvedi, A.K. Daniel, Hidden markov model based node status prediction technique for target coverage in wireless sensor networks, in 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT), 22-23 Dec. 2017, (2017), pp. 223–227.  https://doi.org/10.1109/INTELCCT.2017.8324049 CrossRefGoogle Scholar
  56. 56.
    I. Lobachev, R. Maleryk, S. Antoschuk, D. Filiahin, M. Lobachev, Integration of neural networks into smart sensor networks, in 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), 24-27 May 2018, (2018), pp. 544–548.  https://doi.org/10.1109/DESSERT.2018.8409192 CrossRefGoogle Scholar
  57. 57.
    M. Gholipour, A.T. Haghighat, M.R. Meybodi, Hop-by-Hop congestion avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017).  https://doi.org/10.1016/j.neucom.2016.10.035 CrossRefGoogle Scholar
  58. 58.
    C. Mammadova, H. Ben Hmida, A. Braun, A. Kuijper, New approach for optimizing the usage of situation recognition algorithms within IoT domains, in Ambient intelligence, (Springer International, Cham, 2017), pp. 183–196 CrossRefGoogle Scholar
  59. 59.
    P.K.D. Pramanik, S. Pal, P. Choudhury, Beyond automation: The cognitive IoT. Artificial intelligence brings sense to the internet of things, in Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, ed. by A. K. Sangaiah, A. Thangavelu, V. Meenakshi Sundaram, (Springer International, Cham, 2018), pp. 1–37.  https://doi.org/10.1007/978-3-319-70688-7_1 CrossRefGoogle Scholar
  60. 60.
    R. Haber-Guerra, S.Y. Liang, J.R. Alique, R. Haber-Haber, Fuzzy control of spindle torque in high-speed milling processes. J. Manuf. Sci. Eng. Trans. ASME 128(4), 1014–1018 (2006).  https://doi.org/10.1115/1.2194063 CrossRefGoogle Scholar
  61. 61.
    R.E. Haber, J.R. Alique, A. Alique, J. Hernández, R. Uribe-Etxebarria, Embedded fuzzy-control system for machining processes: Results of a case study. Comput. Indus. 50(3), 353–366 (2003).  https://doi.org/10.1016/s0166-3615(03)00022-8 zbMATHCrossRefGoogle Scholar
  62. 62.
    A.G. Martin, R.E.H. Guerra, Internal model control based on a neurofuzzy system for network applications. a case study on the high-performance drilling process. IEEE Trans. Automat. Sci. Eng. 6(2), 367–372 (2009).  https://doi.org/10.1109/tase.2008.2006686 CrossRefGoogle Scholar
  63. 63.
    R.E. Precup, M.B. Radac, R.C. Roman, E.M. Petriu, Model-free sliding mode control of nonlinear systems: Algorithms and experiments. Inform. Sci. 381, 176–192 (2017).  https://doi.org/10.1016/j.ins.2016.11.026 CrossRefGoogle Scholar
  64. 64.
    M.B. R\v{a}dac, R.E. Precup, E.M. Petriu, S. Preitl, C.A. Drago\c{s}, Data-driven reference trajectory tracking algorithm and experimental validation. IEEE Trans. Indus. Inform. 9(4), 2327–2336 (2013).  https://doi.org/10.1109/tii.2012.2220973 CrossRefGoogle Scholar
  65. 65.
    T. Pflanzner, M. Fidrich, A. Kertesz, Simulating sensor devices for experimenting with IoT cloud systems, in Connected Environments for the Internet of Things: Challenges and Solutions, ed. by Z. Mahmood, (Springer International, Cham, 2017), pp. 105–126.  https://doi.org/10.1007/978-3-319-70102-8_6 CrossRefGoogle Scholar
  66. 66.
    M. Rantz, L.J. Phillips, C. Galambos, K. Lane, G.L. Alexander, L. Despins, R.J. Koopman, M. Skubic, L. Hicks, S. Miller, A. Craver, B.H. Harris, C.B. Deroche, Randomized trial of intelligent sensor system for early illness alerts in senior housing. J. Am. Med. Dir. Assoc. 18(10), 860–870 (2017).  https://doi.org/10.1016/j.jamda.2017.05.012 CrossRefGoogle Scholar
  67. 67.
    M. Cornacchia, K. Ozcan, Y. Zheng, S. Velipasalar, A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17(2), 386–403 (2017).  https://doi.org/10.1109/JSEN.2016.2628346 CrossRefGoogle Scholar
  68. 68.
    I.M. Pires, N.M. Garcia, N. Pombo, F. Flórez-Revuelta, From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184 (2016)CrossRefGoogle Scholar
  69. 69.
    R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inform. Fusion 35, 68–80 (2017).  https://doi.org/10.1016/j.inffus.2016.09.005 CrossRefGoogle Scholar
  70. 70.
    K. Xiao, R. Wang, H. Deng, L. Zhang, C. Yang, Energy-aware scheduling for information fusion in wireless sensor network surveillance. Inform. Fusion (2018a).  https://doi.org/10.1016/j.inffus.2018.08.005 CrossRefGoogle Scholar
  71. 71.
    H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Exp. Syst. Appl. (2018)Google Scholar
  72. 72.
    S. Liu, X. Hao, Z. Zhang, Pedestrian retrieval via part-based gradation regularization in sensor networks. IEEE Access 6, 38171–38178 (2018)CrossRefGoogle Scholar
  73. 73.
    H. Qiao, F.-Y. Wang, X. Cao, Application of a decomposed support vector machine algorithm in pedestrian detection from a moving vehicle, in Intelligence and Security Informatics, (Springer, Berlin, 2005), pp. 662–663CrossRefGoogle Scholar
  74. 74.
    R. Madarshahian, J.M. Caicedo, Human activity recognition using multinomial logistic regression, in Model Validation and Uncertainty Quantification, vol. 3, (Springer International, Cham, 2015), pp. 363–372CrossRefGoogle Scholar
  75. 75.
    X. Niu, M. Li, X. Cui, J. Liu, S. Liu, K.R. Chowdhury, WTrack: HMM-based walk pattern recognition and indoor pedestrian tracking using phone inertial sensors. Pers. Ubiquit. Comput. 18(8), 1901–1915 (2014).  https://doi.org/10.1007/s00779-014-0796-x CrossRefGoogle Scholar
  76. 76.
    Z. Yang, L.S.C. Pun-Cheng, Vehicle detection in intelligent transportation systems and its applications under varying environments: A review. Image Vision Comput. 69, 143–154 (2018).  https://doi.org/10.1016/j.imavis.2017.09.008 CrossRefGoogle Scholar
  77. 77.
    W. Shi, M.B. Alawieh, X. Li, H. Yu, Algorithm and hardware implementation for visual perception system in autonomous vehicle: A survey. Integration 59, 148–156 (2017).  https://doi.org/10.1016/j.vlsi.2017.07.007 CrossRefGoogle Scholar
  78. 78.
    F. Li, Z. Lv, Reliable vehicle type recognition based on information fusion in multiple sensor networks. Comput. Netw. 117, 76–84 (2017)CrossRefGoogle Scholar
  79. 79.
    M.B.B. Mahaleh, S.A. Mirroshandel, Harmony search path detection for vision based automated guided vehicle. Robot. Auton. Syst. 107, 156–166 (2018).  https://doi.org/10.1016/j.robot.2018.06.008 CrossRefGoogle Scholar
  80. 80.
    G. Beruvides, R. Quiza, R. Del Toro, R.E. Haber, Sensoring systems and signal analysis to monitor tool wear in microdrilling operations on a sintered tungsten-copper composite material. Sens. Actuat. A. Phys. 199, 165–175 (2013).  https://doi.org/10.1016/j.sna.2013.05.021 CrossRefGoogle Scholar
  81. 81.
    I. Kabashkin, J. Kundler, Reliability of sensor nodes in wireless sensor networks of cyber physical systems. Proc. Comput. Sci. 104, 380–384 (2017)CrossRefGoogle Scholar
  82. 82.
    L.A. Laranjeira, G.N. Rodrigues, Border effect analysis for reliability assurance and continuous connectivity of wireless sensor networks in the presence of sensor failures. IEEE Trans. Wirel. Commun. 13(8), 4232–4246 (2014)CrossRefGoogle Scholar
  83. 83.
    M. Yan, K.-Y. Lam, S. Han, E. Chan, Q. Chen, P. Fan, D. Chen, M. Nixon, Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Inform. Sci. 278, 34–55 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    M.-T. Vo, T.T. Thanh Nghi, V.-S. Tran, L. Mai, C.-T. Le, Wireless sensor network for real time healthcare monitoring: Network design and performance evaluation simulation, in 5th International Conference on Biomedical Engineering in Vietnam, (Springer International, Cham, 2015), pp. 87–91CrossRefGoogle Scholar
  85. 85.
    D. Cacciagrano, R. Culmone, M. Micheletti, L. Mostarda, Energy-efficient clustering for wireless sensor devices in internet of things, in Performability in Internet of Things, (Springer, Cham, 2019), pp. 59–80CrossRefGoogle Scholar
  86. 86.
    S. Hossain, A.R. Fayjie, O. Doukhi, D.-J. Lee, CAIAS Simulator: Self-driving Vehicle Simulator for AI Research, in International Conference on Intelligent Computing & Optimization, (Springer, Berlin, 2018), pp. 187–195Google Scholar
  87. 87.
    M. Mukherjee, I. Adhikary, S. Mondal, A.K. Mondal, M. Pundir, V.A. Chowdary, Vision of IoT: Applications, Challenges, and Opportunities with Dehradun Perspective, in Proceeding of International Conference on Intelligent Communication, Control and Devices, (Springer, Singapore, 2017), pp. 553–559CrossRefGoogle Scholar
  88. 88.
    A. Bradai, A. Benslimane, K.D. Singh, Dynamic anchor points selection for mobility management in software defined networks. J. Netw. Comput. Appl. 57, 1–11 (2015)CrossRefGoogle Scholar
  89. 89.
    S. Kumar, D. Lobiyal, Novel DV-Hop localization algorithm for wireless sensor networks. Telecommun. Syst. 64(3), 509–524 (2017)CrossRefGoogle Scholar
  90. 90.
    J. Hightower, G. Borriello, Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001).  https://doi.org/10.1109/2.940014 CrossRefGoogle Scholar
  91. 91.
    G.J. Pottie, W.J. Kaiser, Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000).  https://doi.org/10.1145/332833.332838 CrossRefGoogle Scholar
  92. 92.
    N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The Cricket location-support system, in Paper presented at the Proceedings of the 6th annual international conference on Mobile computing and networking, Boston, Massachusetts, USA, (2000)Google Scholar
  93. 93.
    A. Savvides, C.-C. Han, M.B. Strivastava, Dynamic fine-grained localization in Ad-Hoc networks of sensors, in Paper presented at the Proceedings of the 7th annual international conference on Mobile computing and networking, Rome, Italy, (2001)Google Scholar
  94. 94.
    J. Sheu, P. Chen, C. Hsu, A distributed localization scheme for wireless sensor networks with improved grid-scan and vector-based refinement. IEEE Trans. Mob. Comput. 7(9), 1110–1123 (2008).  https://doi.org/10.1109/TMC.2008.35 CrossRefGoogle Scholar
  95. 95.
    T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelzaher, Range-free localization schemes for large scale sensor networks, in Paper presented at the Proceedings of the 9th annual international conference on Mobile computing and networking, San Diego, CA, USA, (2003)Google Scholar
  96. 96.
    F. Tlili, A. Rachedi, A. Benslimane, Time-bounded localization algorithm based on distributed multidimensional scaling for wireless sensor networks, in 2014 IEEE International Conference on Communications (ICC), 10-14 June 2014, (2014), pp. 233–238.  https://doi.org/10.1109/ICC.2014.6883324 CrossRefGoogle Scholar
  97. 97.
    A. Khan, I. Ali, H.A. Mahmood, Localization free variable transmit power routing protocol for underwater wireless sensor networks, in Advances in Network-Based Information Systems, (Springer International, Cham, 2018), pp. 136–147CrossRefGoogle Scholar
  98. 98.
    L. Cui, C. Xu, G. Li, Z. Ming, Y. Feng, N. Lu, A high accurate localization algorithm with DV-Hop and differential evolution for wireless sensor network. Appl. Soft Comput. 68, 39–52 (2018)CrossRefGoogle Scholar
  99. 99.
    S.K. Gharghan, R. Nordin, A.M. Jawad, H.M. Jawad, M. Ismail, Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications. IEEE Access 6, 38475–38489 (2018)CrossRefGoogle Scholar
  100. 100.
    G. Beruvides, R. Quiza, R.E. Haber, Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process. Inform. Sci. 334-335, 161–173 (2016).  https://doi.org/10.1016/j.ins.2015.11.040 CrossRefGoogle Scholar
  101. 101.
    R.E. Haber, G. Beruvides, R. Quiza, A. Hernandez, A simple multi-objective optimization based on the cross-entropy method. IEEE Access 5, 22272–22281 (2017).  https://doi.org/10.1109/access.2017.2764047 CrossRefGoogle Scholar
  102. 102.
    A.J. Perez, M-SPOT: A hybrid multiobjective evolutionary algorithm for node placement in wireless sensor networks, in 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), 16-18 May 2018, (2018), pp. 264–269.  https://doi.org/10.1109/WAINA.2018.00096 CrossRefGoogle Scholar
  103. 103.
    S. Phoemphon, C. So-In, D.T. Niyato, A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Appl. Soft Comput. 65, 101–120 (2018)CrossRefGoogle Scholar
  104. 104.
    Y. Xu, L. Wang, Z. Wang, Y. Lv, Y. Zhang, W. Chen, Using differential evolution to research the multi-objective optimization of medical sensor networks: A brief discussion, in 2018 Chinese Control And Decision Conference (CCDC), (IEEE, 2018)Google Scholar
  105. 105.
    K. Singh, K. Singh, A. Aziz, Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Comput. Netw. 138, 90–107 (2018)CrossRefGoogle Scholar
  106. 106.
    S. Amri, F. Khelifi, A. Bradai, A. Rachedi, M.L. Kaddachi, M. Atri, A new fuzzy logic based node localization mechanism for wireless sensor networks. Future Gener. Comput. Syst. 93, 799–813 (2017)CrossRefGoogle Scholar
  107. 107.
    N.A. Pantazis, S.A. Nikolidakis, D.D. Vergados, Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013).  https://doi.org/10.1109/SURV.2012.062612.00084 CrossRefGoogle Scholar
  108. 108.
    N. Ramluckun, V. Bassoo, Energy-efficient chain-cluster based intelligent routing technique for wireless sensor networks. Appl. Comput. Inform. (2018)Google Scholar
  109. 109.
    R. Logambigai, S. Ganapathy, A. Kannan, Energy–efficient grid–based routing algorithm using intelligent fuzzy rules for wireless sensor networks. Comput. Electr. Eng. 68, 62–75 (2018)CrossRefGoogle Scholar
  110. 110.
    S.B. Shah, Z. Chen, F. Yin, I.U. Khan, N. Ahmad, Energy and interoperable aware routing for throughput optimization in clustered IoT-wireless sensor networks. Future Gener. Comput. Syst. 81, 372–381 (2018)CrossRefGoogle Scholar
  111. 111.
    S. Su, S. Zhao, An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustain. Comput. Inform. Syst. 18, 127–134 (2018)Google Scholar
  112. 112.
    W. Elsayed, M. Elhoseny, S. Sabbeh, A. Riad, Self-maintenance model for wireless sensor networks. Comput. Electr. Eng. 70, 799–812 (2017) CrossRefGoogle Scholar
  113. 113.
    H. He, Z. Zhu, E. Makinen, A neural network model to minimize the connected dominating set for self-configuration of wireless sensor networks. IEEE Trans. Neural Netw. 20(6), 973–982 (2009)CrossRefGoogle Scholar
  114. 114.
    F. Castaño, G. Beruvides, R.E. Haber, A. Villalonga, Time-To-failure modelling in On-Chip LiDAR sensors for automotive applications. Proceedings 1(8), 809 (2017b)CrossRefGoogle Scholar
  115. 115.
    F. Castaño, G. Beruvides, A. Villalonga, R.E. Haber, Self-tuning method for increased obstacle detection reliability based on internet of things LiDAR sensor models. Sensors (Switzerland) 18(5) (2018).  https://doi.org/10.3390/s18051508 CrossRefGoogle Scholar
  116. 116.
    O. Michel, Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)CrossRefGoogle Scholar
  117. 117.
    J. Godoy, J. Pérez, E. Onieva, J. Villagrá, V. Milanés, R. Haber, A driverless vehicle demonstration on motorways and in urban environments. Transport 30(3), 253–263 (2015).  https://doi.org/10.3846/16484142.2014.1003406 CrossRefGoogle Scholar
  118. 118.
    A. Alique, R.E. Haber, R.H. Haber, S. Ros, C. Gonzalez, Neural network-based model for the prediction of cutting force in milling process. A progress study on a real case, in IEEE International Symposium on Intelligent Control—Proceedings, (2000), pp. 121–125Google Scholar
  119. 119.
    I.L. Fe, G. Beruvides, R. Quiza, R. Haber, M. Rivas, Automatic selection of optimal parameters based on simple soft computing methods. A case study on micro-milling processes. IEEE Trans. Indus. Inform. 99, 1-1 (2018).  https://doi.org/10.1109/TII.2018.2816971 CrossRefGoogle Scholar
  120. 120.
    R.E. Haber, J.R. Alique, Nonlinear internal model control using neural networks: An application for machining processes. Neural Comput. Appl. 13(1), 47–55 (2004).  https://doi.org/10.1007/s00521-003-0394-8 CrossRefGoogle Scholar
  121. 121.
    E.M. Voumvoulakis, N.D. Hatziargyriou, Decision trees-aided self-organized maps for corrective dynamic security. IEEE Trans. Power Syst. 23(2), 622–630 (2008)CrossRefGoogle Scholar
  122. 122.
    M.N. Murty, R. Raghava, Kernel-based SVM, in Support Vector Machines and Perceptrons: Learning, Optimization, Classification, and Application to Social Networks, (Springer International, Cham, 2016), pp. 57–67.  https://doi.org/10.1007/978-3-319-41063-0_5 zbMATHCrossRefGoogle Scholar
  123. 123.
    S. Aziz, E.A. Mohamed, F. Youssef, Traffic sign recognition based on multi-feature fusion and ELM classifier. Proc. Comput. Sci. 127, 146–153 (2018).  https://doi.org/10.1016/j.procs.2018.01.109 CrossRefGoogle Scholar
  124. 124.
    G. Beruvides, F. Castaño, R.E. Haber, R. Quiza, A. Villalonga, Coping with complexity when predicting surface roughness in milling processes: Hybrid incremental model with optimal parametrization. Complexity (2017).  https://doi.org/10.1155/2017/7317254 zbMATHCrossRefGoogle Scholar
  125. 125.
    B. Khaldi, F. Harrou, F. Cherif, Y. Sun, Self-organization in aggregating robot swarms: A DW-KNN topological approach. Biosystems 165, 106–121 (2018).  https://doi.org/10.1016/j.biosystems.2018.01.005 CrossRefGoogle Scholar
  126. 126.
    F. Penedo, R.E. Haber, A. Gajate, R.M. Del Toro, Hybrid incremental modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes. IEEE Trans. Indus. Inform. 8(4), 811–818 (2012).  https://doi.org/10.1109/TII.2012.2205699 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fernando Castaño
    • 1
    Email author
  • Gerardo Beruvides
    • 2
  • Alberto Villalonga
    • 3
  • Rodolfo E. Haber
    • 1
  1. 1.Centre for Automation and Robotics (CSIC—UPM)Arganda del ReySpain
  2. 2.Automotive and Industry Lab, Hitachi Europe GmbHSchwaig-OberdingGermany
  3. 3.Technical University of Madrid, UPMMadridSpain

Personalised recommendations