Electrooxidation of Sesame Oil in Acid Electrolyte

  • Paweł P. WłodarczykEmail author
  • Barbara Włodarczyk
Conference paper


The energy industry is based mainly on coal, crude oil, natural gas or nuclear energy. However, in recent years renewable energy sources have also become increasingly used. One of the devices that uses renewable energy sources is a fuel cell (FC). The fuel cell can be powered by hydrogen, methanol, hydrazine or other substrates. Commercial fuel cells use mainly hydrogen, methanol or hydrazine. Due to the fact that water is the only by-product, hydrogen is the considered to be the best fuel for fuel cells. Problems with hydrogen storage cause, however, that new fuels for FCs are very desirable. Vegetable oil seems to be such substance, application of which as fuel in FCs is possible. But in the first place, it is necessary to determine possibilities of electrooxidation of this fuel. The paper presents the research on sesame oil electrooxidation. The work shows results of electrooxidation of sesame oil emulsion on a smooth platinum electrode in acid electrolyte. The maximum stable current density reached in the tests was 5 mA cm−2.


Electrooxidation Biofuel Fuel cell Environmental engineering Renewable energy source 


  1. 1.
    O’Hayre, R., Cha, S., Colella, W., Prinz, F.: Fuel Cell Fundamentals, 3rd edn. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  2. 2.
    Stolten, D.: Hydrogen and Fuel Cells. Fundamentals, Technologies and Applications. Wiley, Weinheim (2010)Google Scholar
  3. 3.
    Fuel Cell Handbook, 7th edn. EG & G, U.S. Department of Energy (2004)Google Scholar
  4. 4.
    Larminie, J., Dicks, A.: Fuel Cell System Explained. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  5. 5.
    Hoogers, G.: Fuel Cell Technology Handbook. CRC Press, Boca Raton (2004)Google Scholar
  6. 6.
    Serov, S., Kwak, C.: Direct hydrazine fuel cells. Appl. Catal. B: Environ. 98(1–2), 1–9 (2010)Google Scholar
  7. 7.
    Kelley, S., Deluga, G., Smyrl, W.: A miniature methanol/air polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 3(9), 407–409 (2000)CrossRefGoogle Scholar
  8. 8.
    Gawdzik, A., Gajda, S., Włodarczyk, P.P., Sofronkow, A.: Hydrogen - highly effective, ecological and clean energy source. Integr. Technol. Energy Saving 2, 28–30 (2001). (in Russian)Google Scholar
  9. 9.
    Rifkin, J.: The Hydrogen Economy. Jeremy P. Tarcher/Penguin, New York (2003)Google Scholar
  10. 10.
    Ross, D.K.: Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10), 1084–1089 (2006)CrossRefGoogle Scholar
  11. 11.
    Furukawa, H., Yaghi, O.Y.: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131(25), 8875–8883 (2009)CrossRefGoogle Scholar
  12. 12.
    Van Gerpen, J.: Biodiesel processing and production. Fuel Process. Technol. 86(10), 1097–1107 (2005)CrossRefGoogle Scholar
  13. 13.
    Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., Shapouri, H.: An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, Prepared for U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy (1998)Google Scholar
  14. 14.
    Corsini, A., Marchegiani, A., Rispoli, F., Sciulli, F., Venturini, P.: Vegetable oils as fuels in diesel engine. Engine performance and emissions. Energy Procedia 81, 942–949 (2015)CrossRefGoogle Scholar
  15. 15.
    Kawentar, W.A., Budiman, A.: Synthesis of biodiesel from second-used cooking oil. Energy Procedia 32, 190–199 (2013)CrossRefGoogle Scholar
  16. 16.
    Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A.: Possibility of direct electricity production from waste canola oil. In: E3S Web of Conferences (EEMS), vol. 19, p. 01019 (2017)Google Scholar
  17. 17.
    Włodarczyk, P.P., Włodarczyk, B.: Electrooxidation of coconut oil in alkaline electrolyte. J. Ecol. Eng. 18(5), 173–179 (2017)CrossRefGoogle Scholar
  18. 18.
    Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A.: Direct electricity production from coconut oil - the electrooxidation of coconut oil in an acid electrolyte. In: E3S Web of Conferences (INFRAEKO 2018), vol. 45, p. 00103 (2018)Google Scholar
  19. 19.
    Włodarczyk, P.P., Włodarczyk, B.: Canola oil electrooxidation in an aqueous solution of KOH - possibility of alkaline fuel cell powering with canola oil. J. Power Technol. 96(6), 459–462 (2016)Google Scholar
  20. 20.
    Yen, G.-C.: Influence of seed roasting process on the changes in composition and quality of sesame (Sesame indicum) oil. J. Sci. Food Agric. 50(4), 563–570 (1990)CrossRefGoogle Scholar
  21. 21.
    Mohamed, H.M.A., Awatif, I.I.: The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chem. 62(3), 269–276 (1998)CrossRefGoogle Scholar
  22. 22.
    Yen, G.-C., Shyu, S.-L.: Oxidative stability of sesame oil prepared from sesame seed with different roasting temperatures. Food Chem. 31(3), 215–224 (1989)CrossRefGoogle Scholar
  23. 23.
    Saydut, A., Duz, M.Z., Kaya, C., Kafadar, A.B., Hamamci, C.: Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresour. Technol. 99(14), 6656–6660 (2008)CrossRefGoogle Scholar
  24. 24.
    Dawodu, F.A., Ayodele, O.O., Bolanle-Ojo, T.: Biodiesel production from Sesamum indicum L. seed oil: An optimization study. Egypt. J. Pet. 23(2), 191–199 (2014)CrossRefGoogle Scholar
  25. 25.
    Shailaja, M., Aruna Kumari, A., Sita Rama Raju, A.V.: Performance evaluation of a diesel engine with sesame oil biodiesel and its blends with diesel. Int. J. Curr. Eng. Technol. Spec. Issue 1 (2013). Proceedings of National Conference on ‘Women in Science & Engineering’ (NCWSE 2013)Google Scholar
  26. 26.
    Ahmad, M., Khan, M.A., Zafar, M., Sultana, S.: Environment-friendly renewable energy from sesame biodiesel. Energy Sources, Part A: Recov. Utilization Environ. Eff. 32(2), 189–196 (2009)CrossRefGoogle Scholar
  27. 27.
    Bockris, J.O.M., Reddy, A.K.N.: Modern Electrochemistry. Kulwer Academic/Plenum Publishers, New York (2000)Google Scholar
  28. 28.
    Vielstich, W., Lamm, A., Gasteiger, H. (eds.): Handbook of Fuel Cells: Fundamentals, Technology, Applications. Wiley, Weinheim (2003)Google Scholar
  29. 29.
    Paraska, O., Karvan, S.: Mathematical modelling in scientific researches of chemical technology processes. Tech. Trans. Mech. 8(107), 203–210 (2010). Cracow University of Technology PressGoogle Scholar
  30. 30.
    Sakharov, I.I., Rastiannikov, E.G., Verbitskaia, G.M., Tarasova, L.N.: Washability of syntanol DS-10 from kitchen utensils. Vopr. Pitan. 4, 75–77 (1975). (in Russian)Google Scholar
  31. 31.
    Survila, A., Mockus, Z., Kanapeckaitė, S., Samulevičienė, M.: Effect of syntanol DS-10 and halides on tin(II) reduction kinetics. Electrochim. Acta 50(14), 2879–2885 (2005)CrossRefGoogle Scholar
  32. 32.
    Ignatov, O.V., Shalunova, Iu.V., Panchenko, L.V., Turkovskaia, O.V., Ptichkina, N.M.: Degradation of Syntanol DS-10 by bacteria immobilized in polysaccharide gels. Prikl. Biokhim. Mikrobiol. 31(2), 220–223 (1995). (in Russian)PubMedGoogle Scholar
  33. 33.
    Włodarczyk, P.P., Włodarczy, K.B.: Powering fuel cell with crude oil. J. Power Technol. 93(5), 394–396 (2013)Google Scholar
  34. 34.
    Włodarczyk, P.P., Włodarczyk, B.: Electrooxidation of diesel fuel in alkaline electrolyte. Infrastruct. Ecol. Rural Areas 4(1), 1071–1080 (2016)Google Scholar
  35. 35.
    Włodarczyk, P.P., Włodarczyk, B.: Electricity production from waste engine oil from agricultural machinery. Infrastruct. Ecol. Rural Areas 4(2), 1609–1618 (2017)Google Scholar
  36. 36.
    Holtzer, M., Staronka, A.: Chemia fizyczna. Wprowadzenie. Wydawnictwo AGH, Kraków (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Technical ScienceUniversity of OpoleOpolePoland

Personalised recommendations