Green Synthesis of Microbial Nanoparticle: Approaches to Application

  • Jyotika Purohit
  • Anirudha Chattopadhyay
  • Nirbhay K. Singh
Part of the Nanotechnology in the Life Sciences book series (NALIS)


In the recent years, the biosynthesis and application of noble nanoparticles have been emerged as escalating field with a great impact on biology, medicine and electronics. Diverse strategies including high-energy physical to toxic chemical procedures have been used for the synthesis of nanoparticles. Moreover, higher production cost with raising environmental risk becomes the major issue. To overcome these, green synthesis of nanoparticles is considered as the potential alternative. Green synthesis involves exploitation of biological entities like algae including microalgae, plants, and microorganisms. Microorganisms have innate potential for the synthesis of nanoparticles and could be regarded as potential biofactories for nanoparticles synthesis. So far, the wealth of microbial resources such as bacteria, algae, fungi, actinomycetes and viruses has been exploited for the development of different metallic nanoparticles. Microbial-nanoparticle syntheses have attracted a great attention due to their rich diversity and wider application with simple, cost-effective, non-toxic, and eco-friendly methods for production of technologically important materials. Hence, exploitation of organisms of microbial origin for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. In this chapter, we provide an overview of green synthesized nanoparticles using various microbes as biotemplates, which highlights from their substantial mechanism to incredible applications for the purpose of minimizing the negative impacts of synthetic procedures, their accompanying chemicals, and derivative compounds.


Drug delivery Catalysis Antimicrobial Biosensor Biotemplate Nanoemulsions Electronics 



The authors humbly acknowledge the assistance provided by the Honorable Vice Chancellor of S.D. Agricultural University, Sardarkrushinagar, Gujarat 385506 (India), for providing the facilities for preparation of this manuscript.


  1. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer, Singapore, pp 61–87CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 28:313–318CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  4. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anwar SH (2018) A brief review on nanoparticles: types of platforms, biological synthesis and applications. Res Rev J Mat Sci 6(2):109–116Google Scholar
  6. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. Scholar
  7. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. Scholar
  8. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. Scholar
  9. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. Scholar
  10. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9):764–766. Scholar
  11. Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388Google Scholar
  12. Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64:120–127Google Scholar
  13. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  14. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589CrossRefGoogle Scholar
  15. Benelli G, Lukehart CM (2017) Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28(1):1–2. Scholar
  16. Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications, vol 2. World Scientific Series in Nanoscience and Nanotechnology. Imperial College Press, London, pp 1–433CrossRefGoogle Scholar
  18. Castro L, Blázquez ML, Munoz JA, Gonzalez F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7(3):109–116PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation-a novel phenomenon. J Appl Phycol 21:145–152CrossRefGoogle Scholar
  20. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37(2):105–108PubMedCrossRefPubMedCentralGoogle Scholar
  21. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles : synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  23. Das SK, Das AR, Guha AK (2009) Gold Nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199. Scholar
  24. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. Scholar
  25. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl 32:49–73Google Scholar
  26. Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4:107. Scholar
  27. Duran N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  28. Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series: Mater Sci Eng 263:032019. Scholar
  30. Fayaz M, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles- an effect of temperature on the size of particles. Colloids Surf B: Biointerfaces 74(1):123–126CrossRefGoogle Scholar
  31. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomed: Nanotechnol Biol Med 6(1):103–109CrossRefGoogle Scholar
  32. Flenniken ML, Uchida M, Lipold L, Kang S, Young MJ, Douglas T (2009) A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327:71–73PubMedPubMedCentralGoogle Scholar
  33. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. Scholar
  34. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247CrossRefGoogle Scholar
  35. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  36. Gibney E (2015) Buckyballs in space solve 100-year-old riddle. Nat News.
  37. Gomaa EZ (2017) Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol 63(1):36–43. Scholar
  38. Gopinathan P, Ashok AM, Selvakumar R (2013) Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl Surf Sci 276(1):717–722CrossRefGoogle Scholar
  39. Gref R, Minamitake Y, Perracchia MT, Trubeskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Sci 263(5153):1600–1603CrossRefGoogle Scholar
  40. Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350PubMedCrossRefGoogle Scholar
  41. Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158(1):389–392PubMedPubMedCentralGoogle Scholar
  42. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501PubMedCrossRefGoogle Scholar
  43. Husseiney MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006CrossRefGoogle Scholar
  44. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165. Scholar
  45. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  46. Iqbal P, Preece JA, Mendes PM (2012) Nanotechnology: the “Top-Down” and “Bottom-Up” approaches. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials. John Wiley & Sons Ltd, Chichester, pp 3589–3602. Scholar
  47. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices, Article ID 359316, 18 pages. Scholar
  48. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  49. Jha AK, Prasad K, Kulkarni AR (2009) Plantsystem: Nature’s nanofactory. Colloids Surf B: Biointerfaces 73:219–223PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefGoogle Scholar
  51. Kalishwaralal K, Banumathi E, Pandian SRK, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B: Biointerfaces 73:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kandasamy S, Prema RS (2015) Methods of synthesis of nanoparticles and its applications. J Chem Pharm Res 7:278–285Google Scholar
  53. Kannan RRR, Stirk WA, Staden JV (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot 86:1–4CrossRefGoogle Scholar
  54. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71(1):133–137PubMedCrossRefPubMedCentralGoogle Scholar
  55. Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24Google Scholar
  56. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  57. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818CrossRefGoogle Scholar
  59. Labrenz M, Druschel GK, Tomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfeld JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefPubMedCentralGoogle Scholar
  60. Li Y, Duan X, Qian Y, Li Y, Liao H (1999) Nanocrystalline silver particles: synthesis. J Colloid Interface Sci 209:347–349PubMedCrossRefPubMedCentralGoogle Scholar
  61. Li C, Cai W, Kan C, Fu G, Zhang L (2004) Ultrasonic solvent inducedmorphological change of Au colloids. Mat Lett 58:196–199CrossRefGoogle Scholar
  62. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 270974:16. Scholar
  63. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) Platinum-Gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable Lithium-Air batteries. J Am Chem Soc 132(35):12170–12171. Scholar
  65. Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13(12):6439–6445CrossRefGoogle Scholar
  66. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44PubMedPubMedCentralGoogle Scholar
  67. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart:302429. Scholar
  68. Mallick K, Witcomb MJ, Scurell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Matter Sci 39:4459–4463CrossRefGoogle Scholar
  69. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100(12):6946–6951PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mariekie G, Anthony P (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28CrossRefGoogle Scholar
  72. Mazhar T, Shrivastava V, Tomar RS (2017) Green synthesis of bimetallic nanoparticles and its applications: a review. J Pharm Sci Res 9(2):102–110Google Scholar
  73. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40PubMedCrossRefPubMedCentralGoogle Scholar
  74. Menon S, Shanmugam RK, Venkat Kumar S (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3:516–527CrossRefGoogle Scholar
  75. Merzlyak A, Lee SW (2006) Phage as template for hybrid materials and mediators for nanomaterials synthesis. Curr Opin Chem Biol 10:246–252PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  77. Moghaddam BA, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565CrossRefGoogle Scholar
  78. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  79. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nath D, Banerjee P (2013) Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014PubMedCrossRefPubMedCentralGoogle Scholar
  81. Oh SY, Seo YD, Kim B, Kim IY, Cha DK (2016) Microbial reduction of nitrate in the presence of zero-valent iron and biochar. Bioresour Technol 200:891–896PubMedCrossRefPubMedCentralGoogle Scholar
  82. Palomo JM, Filice M (2016) Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials 6(5):84. Scholar
  83. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414CrossRefGoogle Scholar
  84. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233. Scholar
  85. Parak WJ, Boudreau R, Le Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885CrossRefGoogle Scholar
  86. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119CrossRefGoogle Scholar
  87. Pierfrancesco M (2010) Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol 3:5–13Google Scholar
  88. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74(1):309–316. Scholar
  89. Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int 6:280512. Scholar
  90. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Res Int:365672. Scholar
  92. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. Scholar
  93. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland. isbn:978-3-319-42989-2CrossRefGoogle Scholar
  94. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature, Singapore. isbn:978-3-319-68423-9CrossRefGoogle Scholar
  95. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713. Scholar
  96. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. Scholar
  97. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  98. Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer International Publishing. isbn:978-3-319-99570-0
  99. Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer Nature, Singapore. isbn:978-981-10-8666-3CrossRefGoogle Scholar
  100. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324. Scholar
  101. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193. PMC3425166. Scholar
  102. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agirc Res 2:48–57CrossRefGoogle Scholar
  103. Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L (2015) Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer, Cham, pp 207–235Google Scholar
  104. Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10(10):6567–6574PubMedCrossRefPubMedCentralGoogle Scholar
  105. Reddy GAK, Joy JM, Mitra T, Shabnam S, Shilpa T (2012) Nano silver – a review. Int J Adv Pharm 2(1):09–15Google Scholar
  106. Royston ES, Brown AD, Harris MT, Culver JN (2009) Preparation of silica stabilized tobacco mosaic virus templates for the production of metal and layered nanoparticles. J Colloid Interface Sci 332(2):402–407. Scholar
  107. Sadhasivam S, Shanmugam P, Yun Y (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surf B: Biointerfaces 81:358–362PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sanchez F, Sobolev K (2010) Nanotechnology in concrete-A review. Construct Build Mater 24:2060–2071CrossRefGoogle Scholar
  109. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504. Scholar
  110. Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:24929. Scholar
  111. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35(4):637–643PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170Google Scholar
  113. Sathiyanarayanan G, Dineshkumar K, Yang YH (2017) Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 43(6):731–752. Scholar
  114. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. Scholar
  115. Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M (2014) Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 4:52156–52169. Scholar
  116. Shah SP, Konsta-Gdoutos MS, Metaxa ZS, Mondal P (2009) Nanoscale modification of cementitious materials. In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J (eds) Nanotechnology in construction 3. Springer, Berlin/Heidelberg, pp 125–130CrossRefGoogle Scholar
  117. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308. Scholar
  118. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arabian J Chem.
  119. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256CrossRefGoogle Scholar
  120. Shinkai M, Yanase M, Suzuki M, Hiroyuki H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184CrossRefGoogle Scholar
  121. Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363. Scholar
  122. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57(1):97–101PubMedCrossRefPubMedCentralGoogle Scholar
  123. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct 3(3):115–122Google Scholar
  124. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599PubMedCrossRefPubMedCentralGoogle Scholar
  125. Sleytr UB, Messner P, Pum D, Sara M (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sobolev K, Flores I, Torres-Martinez LM, Valdez PL, Zarazua E, Cuellar EL (2009) Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. In: 3rd international symposium on nanotechnology in construction, Prague, Czech Republic, pp 139–148CrossRefGoogle Scholar
  127. Songara J, Shanker R, Singh NK (2018) Transformation of benzyl butyl phthalate by Pseudomonas putida and photocatalytic ZnO nanoparticles. Int J Chem Stud 6(4):1334–1340Google Scholar
  128. Stephen JR, Maenaughton S (1999) Developments in terrestrial bacterial remediation of metals. J Curr Opin Biotechnol 10:230–233CrossRefGoogle Scholar
  129. Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tan Y, Dai Y, Li Y, Zhua D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem 13:1069–1075CrossRefGoogle Scholar
  131. Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89CrossRefGoogle Scholar
  132. Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of application. Afr J Biotechnol 12:219–226CrossRefGoogle Scholar
  133. Thakkar KN, Mhatre SS, Rasesh Y, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262CrossRefGoogle Scholar
  134. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630PubMedCrossRefPubMedCentralGoogle Scholar
  135. Vasquez RD, Apostol JG, de Leon JD, Mariano JD, Mirhan CMC, Pangan SS, Reyes AGM, Zamora ET (2016) Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum J.G. Agardh: assessment of toxicity and hepatoprotective activity. OpenNano 1:16–24CrossRefGoogle Scholar
  136. Velusamy P, Venkat Kumar G, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53(1):55–59PubMedCrossRefPubMedCentralGoogle Scholar
  138. Vijayaraghavan K, Kamala Nalini SP (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5:1098–1110PubMedCrossRefPubMedCentralGoogle Scholar
  139. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wen AM, Shukla S, Saxena P, Aljabali AA, Yildiz I et al (2012) Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules 13:3990–4001PubMedPubMedCentralCrossRefGoogle Scholar
  141. Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45(1):75–81PubMedCrossRefPubMedCentralGoogle Scholar
  142. Yan S, He W, Sun C, Zhang X, Zhao H, Li Z, Zhou W, Tian X, Sun X, Han X (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dye Pigment 80:254–258CrossRefGoogle Scholar
  143. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jyotika Purohit
    • 1
  • Anirudha Chattopadhyay
    • 1
  • Nirbhay K. Singh
    • 2
  1. 1.Department of Plant PathologyC.P. College of Agriculture, S.D. Agricultural UniversitySardarkrushinagarIndia
  2. 2.Department of MicrobiologyC.P. College of Agriculture, S.D. Agricultural UniversitySardarkrushinagarIndia

Personalised recommendations