Applications of Carbon-Based Nanomaterials for Antimicrobial Photodynamic Therapy

  • Parasuraman Paramanantham
  • V. T. Anju
  • Madhu Dyavaiah
  • Busi Siddhardha
Part of the Nanotechnology in the Life Sciences book series (NALIS)


The emergence of drug-resistant strains among pathogenic microorganisms urges the need for alternative treatment methods which provide less or no sign of resistance development. The indiscriminate use of antimicrobial drugs and quick adaptability of microorganisms to these agents are the two reasons for the emergence of drug-resistant strains. The modern healthcare system is facing difficulty to combat infectious diseases caused by drug-resistant planktonic and biofilm-embedded microorganisms. It is evident that the developments of new therapeutic strategies are required to fight against microbial diseases. Antimicrobial photodynamic inactivation (aPDT) is being accepted as a potential alternative candidate to inactivate and kill drug-resistant microbial strains. aPDT involves the integration of a nontoxic dye (photosensitizer) and light of specific wavelength to activate PS to produce cytotoxic reactive oxygen species (ROS). The produced reactive oxygen species further damage the bacterial cell membrane and mediate microbial death. To achieve an effective photodynamic inactivation, different kinds of nanoparticles are employed which aid in the enhanced antimicrobial photodynamic inactivation of photosensitizers (PS). Recently, carbon nanostructures gained much attention in the phototherapy of microbial strains which increased the solubility of PS, photogeneration of ROS, and enhanced uptake and delivery of PS to the target cells. This chapter focused on the antimicrobial photodynamic inactivation of microorganisms using different carbon nanostructures such as fullerenes, graphene oxide, carbon nanotubes, and carbon nanodots and their mechanism of action. The general mechanism of action of these carbon nanostructures includes ROS generation, cell membrane damage, leakage of cytoplasmic contents, oxidative death, protein denaturation, DNA damage, and lipid peroxidation. Carbon nanomedicine and its application in aPDT are an emerging field which enhances the potential to prevent, treat, and control infectious diseases.


Drug-resistant bacteria aPDT ROS Carbon nanostructures Antimicrobial activity 


  1. Aboofazeli R, Hadidi N, Kobarfard F, Nafissi-Varcheh N (2011) Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int J Nanomedicine 6:737–746PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abrahamse H, Kruger CA, Kadanyo S, Mishra A (2017) Nanoparticles for advanced photodynamic therapy of cancer. Photomed Laser Surg 35(11):581–588PubMedCrossRefGoogle Scholar
  3. Akasaka T, Matsuoka M, Hashimoto T, Abe S, Uo M, Watari F (2010) The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans. Mater Sci Eng B 173(1–3):187–190CrossRefGoogle Scholar
  4. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113(47):20214–20220CrossRefGoogle Scholar
  5. Al Awak MM, Wang P, Wang S, Tang Y, Sun Y-P, Yang L (2017) Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Adv 7(48):30177–30184PubMedPubMedCentralCrossRefGoogle Scholar
  6. Albert K, Hsu H-Y (2016) Carbon-based materials for photo-triggered theranostic applications. Molecules 21(11):1585PubMedCentralCrossRefGoogle Scholar
  7. Al-jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10(9):1066PubMedCentralCrossRefGoogle Scholar
  8. Altinbasak I, Jijie R, Barras A, Golba B, Sanyal R, Bouckaert J, Drider D, Bilyy R, Dumych T, Paryzhak S, Vovk V, Boukherroub R, Sanyal A, Szunerits S (2018) Reduced graphene-oxide-embedded polymeric nanofiber mats: An “On-Demand” photothermally triggered antibiotic release platform. ACS Appl Mater 10(48):41098–41106CrossRefGoogle Scholar
  9. Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T (2009) Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci 14(2):69–72PubMedCrossRefGoogle Scholar
  10. Araújo NC, Fontana CR, Bagnato VS, Gerbi MEM (2012) Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 30(7):393–399. Scholar
  11. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012. Scholar
  12. Badireddy AR, Hotze EM, Chellam S, Alvarez, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of Fullerol nanoparticles. Environ Sci Technol 41(18):6627–6632PubMedCrossRefGoogle Scholar
  13. Banerjee I, Douaisi MP, Mondal D, Kane RS (2012) Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology 23(10):105101PubMedCrossRefGoogle Scholar
  14. Basak S, Singh P, Rajurkar M (2016) Multidrug resistant and extensively drug resistant bacteria: a study. J Pathog 2016:1–5. Scholar
  15. Beytollahi L, Pourhajibagher M, Chiniforush N et al (2017) The efficacy of photodynamic and photothermal therapy on biofilm formation of streptococcus mutans: an in vitro study. Photodiagn Photodyn Ther 17:56–60. Scholar
  16. Biliński J, Grzesiowski P, Muszyński J et al (2016) Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp 64(3):255–258. Scholar
  17. Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27. Scholar
  18. Brunet L, Lyon DY, Zodrow K, Rouch J-C, Caussat B, Serp P, Remigy JC, Wiesner MR, Alvarez PJJ (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci 25(4):565–576CrossRefGoogle Scholar
  19. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71PubMedCrossRefGoogle Scholar
  20. Chaudhary AS (2016) A review of global initiatives to fight antibiotic resistance and recent antibiotics′ discovery. Acta Pharm Sin B 6(6):552–556. Scholar
  21. Chen Z, Ma L, Liu Y, Chen C (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3):238–250PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16):2735–2746PubMedCrossRefGoogle Scholar
  23. Choi J, Seo Y, Hwang J, Kim J, Jeong Y, Hwang M (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomedicine 9(1):4621PubMedPubMedCentralCrossRefGoogle Scholar
  24. Colino C, Millán C, Lanao J (2018) Nanoparticles for signaling in biodiagnosis and treatment of infectious diseases. Int J Mol Sci 19(6):1627. Scholar
  25. Constantin C, Neagu M, Ion RM, Gherghiceanu M, Stavaru C (2010) Fullerene-porphyrin nanostructures in photodynamic therapy. Nanomedicine 5(2):307–317PubMedCrossRefGoogle Scholar
  26. Crow JR, Davis SL, Chaykosky DM, Smith TT, Smith JM (2015) Probiotics and fecal microbiota transplant for primary and secondary prevention of Clostridium difficile infection. Pharmacother J Hum Pharmacol Drug Ther 35(11):1016–1025. Scholar
  27. Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R (2017) Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjug Chem 28(4):1115–1122PubMedCrossRefGoogle Scholar
  28. Deryabin DG, Davydova OK, Yankina ZZ, Vasilchenko AS, Miroshnikov SA, Kornev AB et al (2014) The activity of [60]fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli : a comparative study. J Nanomater 2014:1–9CrossRefGoogle Scholar
  29. Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol 2012:1–7Google Scholar
  30. Dostalova S, Moulick A, Milosavljevic V, Guran R, Kominkova M, Cihalova K et al (2016) Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatshefte für Chemie – Chem Mon 147(5):905–918CrossRefGoogle Scholar
  31. Friedman ND, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22(5):416–422. Scholar
  32. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10(4):369–378. Scholar
  33. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404. Scholar
  34. Gao Y, Wu J, Ren X, Tan X, Hayat T, Alsaedi A et al (2017) Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environ Sci Nano 4(5):1016–1024CrossRefGoogle Scholar
  35. Garcez AS, Núñez SC, Baptista MS et al (2011) Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochem Photobiol Sci 10(4):483–490. Scholar
  36. Gholibegloo E, Karbasi A, Pourhajibagher M, Chiniforush N, Ramazani A, Akbari T, Bahador A (2017) Khoobi M (2018) Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. Photochem Photobiol B Biol 181:14–22CrossRefGoogle Scholar
  37. Grinholc M, Nakonieczna J, Fila G, Taraszkiewicz A, Kawiak A, Szewczyk G, Sarna T, Lilge T, Bielawski KP (2015) Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies. Appl Microbiol Biotechnol 99(9):4031–4043PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73. Scholar
  39. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436. Scholar
  40. Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254. Scholar
  41. Harper D, Parracho H, Walker J et al (2014) Bacteriophages and biofilms. Antibiotics 3(3):270–284. Scholar
  42. Hauser AR, Mecsas J, Moir DT (2016) Beyond antibiotics: new therapeutic approaches for bacterial infections. Weinstein RA, ed. Clin Infect Dis 63(1):89–95. Scholar
  43. Hegge ABEE, Andersen T, Melvik JE, Kristensen S, Tønnesen HH (2010) Evaluation of novel alginate foams as drug delivery systems in antimicrobial photodynamic therapy (aPDT) of infected wounds — an in vitro study : studies on curcumin and curcuminoides XL. J Pharm Sci 99(8):3499–3513. Scholar
  44. Huang YY, Sharma SK, Dai T, Chung H, Yaroslavsky A, Garcia-Diaz M, Chang J, Chiang LY, Hamblin MR (2012) Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev 1(2):111–146PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ibrahim SO, Abdulkareem AS, Isah KU, Ahmadu U, Bankole MT, Kariim I (2018) Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst. Adv Nat Sci Nanosci Nanotechnol 9(2):025008. Scholar
  46. Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R (2018) Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces 170(June):347–354PubMedCrossRefGoogle Scholar
  47. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Lan 24(13):6409–6413CrossRefGoogle Scholar
  48. Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS (2016) Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 95:32–42. Scholar
  49. Kim J-W, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP (2007) Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg Med 39(7):622–634PubMedCrossRefGoogle Scholar
  50. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12(3):2519–2538. Scholar
  51. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602PubMedCrossRefGoogle Scholar
  52. Li J, Wang G, Zhu H, Zhang M, Zheng X, Di Z, Liu X, Wang X (2015) Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep 4(1):4359CrossRefGoogle Scholar
  53. Li H, Huang J, Song Y, Zhang M, Wang H, Lu F et al (2018) Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater 10(32):26936–26946CrossRefGoogle Scholar
  54. Liebana E, Carattoli A, Coque TM et al (2013) Public health risks of enterobacterial isolates producing extended-spectrum -lactamases or AmpC -lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56(7):1030–1037. Scholar
  55. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chemie Int Ed 46(34):6473–6475CrossRefGoogle Scholar
  56. Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton A, Hamblin MR (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicin 5(10):1525–1533CrossRefGoogle Scholar
  57. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366PubMedCrossRefGoogle Scholar
  58. Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials (Basel) 9(8):617. Scholar
  59. Machado SM, Pacheco-Soares C, Marciano FR, Lobo AO, da Silva NS (2014) Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube. Mater Sci Eng C 36(1):180–186CrossRefGoogle Scholar
  60. Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23. Scholar
  61. Manjón F, Santana-Magaña M, García-Fresnadillo D, Orellana G (2014) Are silicone-supported [C60]-fullerenes an alternative to Ru(ii) polypyridyls for photodynamic solar water disinfection? Photochem Photobiol 13(2):397CrossRefGoogle Scholar
  62. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:1–15CrossRefGoogle Scholar
  63. Marshall NC, Finlay BB (2014) Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 18(2):137–152. Scholar
  64. Mesquita MQ, Dias CJ, Neves MGPMS, Almeida A, Faustino MAF (2018) Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules 23(10):2424CrossRefGoogle Scholar
  65. Mizuno K, Zhiyentayev T, Huangv L, Khalil S, Nasim F, Tegos GP, Gali H, Jahnke A, Wharton T, Hamblin MR (2011) Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol 02(02):1–9CrossRefGoogle Scholar
  66. Mocan T, Matea CT, Pop T et al (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74(19):3467–3479. Scholar
  67. Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med 43(5):711–719PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nakanishi I, Fukuzumi S, Konishi T, Ohkubo K, Fujitsuka M, Ito O, Miyata M (2002) DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to γ-cyclodextrin-bicapped C 60 in an oxygen-saturated aqueous solution. J Phys Chem B 106(9):2372–2380CrossRefGoogle Scholar
  69. Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901PubMedCrossRefGoogle Scholar
  70. Oruba Z, Łabuz P, Macyk W, Chomyszyn-Gajewska M (2015) Antimicrobial photodynamic therapy—A discovery originating from the pre-antibiotic era in a novel periodontal therapy. Photodiagn Photodyn Ther 12(4):612–618. Scholar
  71. Oza G, Pandey S, Gupta A, Shinde S, Mewada A, Jagadale P, Sharon M, Sharon M (2013) Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater Sci Eng C 33(7):4392–4400CrossRefGoogle Scholar
  72. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815. Scholar
  73. Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M (2011) Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 10(5):712PubMedCrossRefGoogle Scholar
  74. Prajapati VK, Awasthi K, Gautam S et al (2011) Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 66(4):874–879. Scholar
  75. Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK, pp. 53–70Google Scholar
  76. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem 8(2):123–137CrossRefGoogle Scholar
  77. Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, Paunovic VG, Dramicanin MD, Markovic ZM, Trajkovic VS (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15):4428–4435PubMedCrossRefGoogle Scholar
  78. Robertson CA, Evans DH, Abrahamse H (2009) Journal of photochemistry and photobiology B : biology photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 96(1):1–8. Scholar
  79. Roca I, Akova M, Baquero F et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29. Scholar
  80. Rosa LP, Cristina F, Nader SA, Meira GA, Viana MS (2015) Effectiveness of antimicrobial photodynamic therapy using a 660 nm laser and methyline blue dye for inactivating Staphylococcus aureus biofilms in compact and cancellous bones : An in vitro study. Photodiagn Photodyn Ther 12(2):276–281. Scholar
  81. Rout B, Liu CH, Wu WC (2016) Enhancement of photodynamic inactivation against Pseudomonas aeruginosa by a nano-carrier approach. Colloids Surf B Biointerfaces 140:472–480. Scholar
  82. Roy AK, Kim S-M, Paoprasert P, Park S-Y, In I (2015) Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Adv 5(40):31677–31682CrossRefGoogle Scholar
  83. Rud Y, Buchatskyy L, Prylutskyy Y, Marchenko O, Senenko A, Schütze C, Ritter U (2012) Using C 60 fullerenes for photodynamic inactivation of mosquito iridescent viruses. J Enzyme Inhib Med Chem 27(4):614–617PubMedCrossRefGoogle Scholar
  84. Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P (2018) Antimicrobial photodynamic therapy: single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids Surf B Biointerfaces 162:108–117PubMedCrossRefGoogle Scholar
  85. Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N (2017) Bactericidal laser ablation of carbon dots: an in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B Biol 166:323–332CrossRefGoogle Scholar
  86. Sharland M, Saroey P, Berezin EN (2015) The global threat of antimicrobial resistance - the need for standardized surveillance tools to define burden and develop interventions. J Pediatr 91(5):410–412. Scholar
  87. Sharma SK, Chiang LY, Hamblin MR (2011) Photodynamic therapy with fullerenes in vivo : reality or a dream? Nanomedicine 6(10):1813–1825PubMedCrossRefGoogle Scholar
  88. Sharma A, Varshney M, Nanda SS, Shin HJ, Kim N, Yi DK et al (2018) Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets. Chem Phys Lett 698:85–92CrossRefGoogle Scholar
  89. Shvedova AA, Fabisiak JP, Kisin ER et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38(5):579–590. Scholar
  90. Smith A (2005) Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57(10):1539–1550. Scholar
  91. Spagnul C, Turner LC, Boyle RW (2015) Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B Biol 150:11–30. Scholar
  92. Sperandio F, Huang Y-Y, Hamblin M (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat Antiinfect Drug Discov 8(2):108–120. Scholar
  93. Sudhakara RR, Ramya K, Ramesh T, Subbarayudu G, Sai MN, Sai KC (2012) Photodynamic therapy in oral diseases. Int J Biol Med Res 3:1875–1883Google Scholar
  94. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757PubMedCrossRefGoogle Scholar
  95. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212PubMedPubMedCentralCrossRefGoogle Scholar
  96. Teh S, Mok P, Abd Rashid M et al (2018) Recent updates on treatment of ocular microbial infections by stem cell therapy: a review. Int J Mol Sci 19(2):558. Scholar
  97. Tetro JA (2018) From hidden outbreaks to epidemic emergencies: the threat associated with neglecting emerging pathogens. Microbes Infect 0–5. Scholar
  98. Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodríguez-Castellón E, Bandosz TJ (2018) S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon 135:104–111CrossRefGoogle Scholar
  99. Vassena C, Fenu S, Giuliani F et al (2014) Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int J Antimicrob Agents 44(1):47–55. Scholar
  100. Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim S-K (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials 7(5):3946–3955PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vt A, Paramanantham P, Sb SL, Sharan A, Alsaedi MH, Dawoud TMS, Asad S, Busi S (2018) Antimicrobial photodynamic activity of rose bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagn Photodyn Ther 24:300–310CrossRefGoogle Scholar
  102. Wang Y, Li Z, Wang J, Li J, Lin (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212PubMedCrossRefGoogle Scholar
  103. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317PubMedCrossRefGoogle Scholar
  104. Whitehead KA, Vaidya M, Liauw CM, Brownson DAC, Ramalingam P, Kamieniak J et al (2017) Antimicrobial activity of graphene oxide-metal hybrids. Int Biodeterior Biodegradation 123:182–190CrossRefGoogle Scholar
  105. Wong T-W, Wang Y-Y, Sheu H-M, Chuang Y-C (2005) Bactericidal effects of toluidine blue-mediated photodynamic action on vibrio vulnificus. Antimicrob Agents Chemother 49(3):895–902. Scholar
  106. Xin Q, Shah H, Nawaz A et al (2018) Antibacterial carbon-based nanomaterials. Adv Mater 1804838:1804838. Scholar
  107. Yacoby I, Benhar I (2008) Antibacterial nanomedicine. Nanomedicine 3(3):329–341PubMedCrossRefGoogle Scholar
  108. Yin R, Wang M, Huang YY, Landi G, Vecchio D, Chiang LY, Hamblin MR (2015) Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. Free Radic Biol Med 79:14–27PubMedCrossRefGoogle Scholar
  109. Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomed Nanotechnol, Biol Med 13(7):2281–2301. Scholar
  110. Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538PubMedCrossRefGoogle Scholar
  111. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J (2014) Nanomedicine in the management of microbial infection – overview and perspectives. Nano Today 9(4):478–498. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Parasuraman Paramanantham
    • 1
  • V. T. Anju
    • 2
  • Madhu Dyavaiah
    • 2
  • Busi Siddhardha
    • 1
  1. 1.Department of MicrobiologySchool of Life Sciences, Pondicherry UniversityPuducherryIndia
  2. 2.Department of Biochemistry and Molecular BiologySchool of Life Sciences, Pondicherry UniversityPuducherryIndia

Personalised recommendations