Sensing Soil Microbes and Interactions: How Can Nanomaterials Help?

  • Poonam Sashidhar
  • Mukul Kumar Dubey
  • Mandira KocharEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Detecting microbial life in the soil environment is a goal of space exploration because of its influence not only on the plant growth but also on the human health. In order to identify the soil microbes contributing to the nutrient cycling and sustainable agriculture, various studies have been attempted to capture the microbial activity in vivo and to understand their role individually. However, these attempts have not been successful owing to the presence of nonculturable microbes in abundance. Advances in metagenomics study and sensor-based technology have contributed to a great extent to identify such microbes. Conventional soil microbial detection involving culture-dependent methods have failed to deliver in real time. Nanomaterial incorporation into biosensors can enhance the performance of biosensors due to their unique physicochemical properties. This field has initiated the understanding of the complex interplay between nanomaterials and microbes and the resulting biological consequences. This chapter provides brief insights into the importance of the soil microbiome and biosensors with nanomaterial interventions for bacterial detection. A range of nanomaterials have been investigated for their role in biorecognition. Additionally, the mechanistic aspects of nanomaterial-microbe interaction with implications for microbial detection are touched upon.


Microbiome Microbial detection Microbial sensing Biosensors Nanomaterials 


  1. Abbasian F, Ghafar-Zadeh E, Magierowski S (2018) Microbiology sensing technology: a review. Bioengineering 5(1):20PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abd-Elsalam K, Mohamed AA, Prasad R (2019) Magnetic nanostructures: environmental and agricultural applications. Springer International Publishing. isbn:978-3-030-16438-6
  3. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  4. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673(1):1–25PubMedCrossRefGoogle Scholar
  5. Arakha M, Jha S (2018) Interfacial phenomena on biological membranes. Springer. Scholar
  6. Aruguete DM, Hochella MF (2010) Bacteria–nanoparticle interactions and their environmental implications. Environ Chem 7(1):3–9CrossRefGoogle Scholar
  7. Barve A, Wagner A (2013) A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature 500(7461):203PubMedCrossRefGoogle Scholar
  8. Beattie GA (2007) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Plant-associated bacteria. Springer, Dordrecht pp 1–56Google Scholar
  9. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefGoogle Scholar
  10. Berg G, Rybakova D, Grube M, Köberl M (2015) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350PubMedCrossRefGoogle Scholar
  12. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39(8):3031–3056PubMedCrossRefGoogle Scholar
  13. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  14. Borneman J (1999) Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65(8):3398–3400PubMedPubMedCentralGoogle Scholar
  15. Bose S, Hochella MF Jr, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976CrossRefGoogle Scholar
  16. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286PubMedCrossRefGoogle Scholar
  17. Bu D, Zhuang H, Yang G, Ping X (2014) An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sens Actuators B Chem 195:540–548CrossRefGoogle Scholar
  18. Cao C, Kim JH, Yoon D, Hwang E-S, Kim Y-J, Baik S (2008) Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater Chem Phys 112(3):738–741CrossRefGoogle Scholar
  19. Chalmeau J, Dagkessamanskaia A, Le Grimellec C, Francois J-M, Sternick J, Vieu C (2009) Contribution to the elucidation of the structure of the bacterial flagellum nano-motor through AFM imaging of the M-Ring. Ultramicroscopy 109(8):845–853PubMedCrossRefGoogle Scholar
  20. Chandler D, Davidson G, Grant W, Greaves J, Tatchell G (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283CrossRefGoogle Scholar
  21. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM (2017) Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 46(5):1272–1283PubMedPubMedCentralCrossRefGoogle Scholar
  22. Creasey RC, Shingaya Y, Nakayama T (2015) Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Mater Chem Phys 158:52–59CrossRefGoogle Scholar
  23. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221(2):297–303PubMedCrossRefGoogle Scholar
  24. Dary M, Chamber-Pérez M, Palomares A, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1–3):323–330PubMedCrossRefGoogle Scholar
  25. del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31CrossRefGoogle Scholar
  26. Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Springer 321(1):1–3Google Scholar
  27. Dickert FL, Haunschild A (1993) Sensor materials for solvent vapor detection—donor–acceptor and host–guest interactions. Adv Mater 5(12):887–895CrossRefGoogle Scholar
  28. El-Ansary A, Faddah LM (2010) Nanoparticles as biochemical sensors. Nanotechnol Sci Appl 3:65PubMedPubMedCentralCrossRefGoogle Scholar
  29. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A 103(13): 4841–4845CrossRefGoogle Scholar
  30. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579PubMedCrossRefGoogle Scholar
  31. Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426PubMedCrossRefGoogle Scholar
  32. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, pseudomonas putida KT2440. J Biol Eng 3(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gallie J, Libby E, Bertels F, Remigi P, Jendresen CB, Ferguson GC, Desprat N, Buffing MF, Sauer U, Beaumont HJ (2015) Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens. PLoS Biol 13(3):e1002109PubMedPubMedCentralCrossRefGoogle Scholar
  34. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400PubMedCrossRefGoogle Scholar
  35. Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: Strategies and Functions. In: Microorganisms in Soils: Roles in Genesis and Functions. (eds. Buscot F and Varma A), Springer-Verlag, Berlin, Heidelberg, 3:213–252Google Scholar
  36. Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1(6):15051PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hidalgo G, Burns A, Herz E, Hay AG, Houston PL, Wiesner U, Lion LW (2009) Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors. Appl Environ Microbiol 75(23):7426–7435PubMedPubMedCentralCrossRefGoogle Scholar
  38. Himaja A, Karthik P, Singh SP (2015) Carbon dots: the newest member of the carbon nanomaterials family. Chem Rec 15(3):595–615PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hobson N, Tothill I, Turner A (1996) Microbial detection. Biosens Bioelectron 11(5):455–477PubMedCrossRefPubMedCentralGoogle Scholar
  40. Indiragandhi P, Anandham R, Madhaiyan M, Sa T (2008) Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56(4):327–333PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jha P, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103(4):1311–1320PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jiang C-Y, Sheng X-F, Qian M, Wang Q-Y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164PubMedCrossRefGoogle Scholar
  43. Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils–a review. Biol Fertil Soils 33(6):443–453CrossRefGoogle Scholar
  44. Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7(2):380–383PubMedCrossRefGoogle Scholar
  45. Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Delivery Rev 62(4–5):408–423CrossRefGoogle Scholar
  46. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Soil Heavy Metals (eds. Sherameti I and Varma A) Springer-Verlag, Berlin, Heidelberg, 19:31–64Google Scholar
  47. Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120(4):373–382CrossRefGoogle Scholar
  48. Kim JY, Voznyy O, Zhitomirsky D, Sargent EH (2013) 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25(36):4986–5010PubMedCrossRefGoogle Scholar
  49. Kivirand K, Kagan M, Rinken T (2015) Biosensors for the detection of antibiotic residues in milk. InBiosensors-micro and nanoscale applications 2015. InTech. Scholar
  50. Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp 879–882Google Scholar
  51. Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). Azospirillum/Plant Assoc 187:137–166Google Scholar
  52. Kulp T, Hoeft S, Asao M, Madigan M, Hollibaugh J, Fisher J, Stolz J, Culbertson C, Miller L, Oremland R (2008) Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321(5891):967–970PubMedCrossRefGoogle Scholar
  53. Kumar KV, Singh N, Behl H, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72(4):678–683PubMedCrossRefGoogle Scholar
  54. Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286PubMedCrossRefGoogle Scholar
  55. Kwak S-Y, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140CrossRefGoogle Scholar
  56. Li Y, Li H (2014) Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. J Basic Microbiol 54(3):226–231CrossRefPubMedGoogle Scholar
  57. Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21(1):191–198PubMedCrossRefGoogle Scholar
  58. Lim JW, Ha D, Lee J, Lee SK, Kim T (2015) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lovley DR (2017) Happy together: microbial communities that hook up to swap electrons. ISME J 11(2):327CrossRefPubMedGoogle Scholar
  60. Ma Y, Jiao K, Yang T, Sun D (2008) Sensitive PAT gene sequence detection by nano-SiO2/p-aminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sens Actuators B Chem 131(2):565–571CrossRefGoogle Scholar
  61. Ma Y, Rajkumar M, Vicente J, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13(2):126–139CrossRefGoogle Scholar
  62. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefGoogle Scholar
  63. Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664PubMedCrossRefGoogle Scholar
  64. Maki WC, Mishra NN, Cameron EG, Filanoski B, Rastogi SK, Maki GK (2008) Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens Bioelectron 23(6):780–787PubMedCrossRefGoogle Scholar
  65. Mao X, Yang L, Su X-L, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157: H7. Biosens Bioelectron 21(7):1178–1185PubMedCrossRefGoogle Scholar
  66. Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319CrossRefGoogle Scholar
  67. Mauchline TH, Malone JG (2017) Life in earth–the root microbiome to the rescue? Curr Opin Microbiol 37:23–28PubMedCrossRefGoogle Scholar
  68. Mauchline T, Chedom-Fotso D, Chandra G, Samuels T, Greenaway N, Backhaus A, McMillan V, Canning G, Powers S, Hammond-Kosack K (2015) An analysis of P seudomonas genomic diversity in take-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environ Microbiol 17(11):4764–4778PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mayak S, Tirosh T, Glick B (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18(2):49–53PubMedCrossRefGoogle Scholar
  70. Maye MM, Gang O, Cotlet M (2010) Photoluminescence enhancement in CdSe/ZnS–DNA linked–Au nanoparticle heterodimers probed by single molecule spectroscopy. Chem Commun 46(33):6111–6113CrossRefGoogle Scholar
  71. McKenzie F, Faulds K, Graham D (2007) Sequence-specific DNA detection using high-affinity LNA-functionalized gold nanoparticles. Small 3(11):1866–1868PubMedCrossRefGoogle Scholar
  72. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663CrossRefPubMedGoogle Scholar
  73. Moyano DF, Rotello VM (2011) Nano meets biology: structure and function at the nanoparticle interface. Langmuir 27(17):10376–10385PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617PubMedCrossRefGoogle Scholar
  75. Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670CrossRefGoogle Scholar
  76. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543PubMedCrossRefGoogle Scholar
  77. Noel TC, Sheng C, Yost C, Pharis R, Hynes M (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42(3):279–283PubMedCrossRefGoogle Scholar
  78. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  79. Parejko JA, Mavrodi DV, Mavrodi OV, Weller DM, Thomashow LS (2012) Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of Central Washington State (USA). Microb Ecol 64(1):226–241PubMedCrossRefGoogle Scholar
  80. Park S, Worobo RW, Durst RA (1999) Escherichia coli O157: H7 as an emerging foodborne pathogen: a literature review. Crit Rev Food Sci Nutr 39(6):481–502PubMedCrossRefGoogle Scholar
  81. Petrov A, Audette GF (2012) Peptide and protein-based nanotubes for nanobiotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5):575–585PubMedCrossRefGoogle Scholar
  82. Phi Q-T, Park Y-M, Seul K-J, Ryu C-M, Park S-H, Kim J-G, Ghim S-Y (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20(12):1605–1613PubMedGoogle Scholar
  83. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58(9):2717–2722PubMedPubMedCentralGoogle Scholar
  84. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. Scholar
  85. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  86. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Switzerland, pp 247–260Google Scholar
  87. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. Scholar
  88. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.
  89. Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agriculture paradigm. Springer Nature, Singapore. isbn:978-981-10-4678-0Google Scholar
  90. Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. isbn:978-3-319-99570-0
  91. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361CrossRefGoogle Scholar
  92. Rabbi SMF, Daniel H, Lockwood PV, Macdonald C, Pereg L, Tighe M, Wilson BR, Young IM (2016) Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Sci Rep 6:33012PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefGoogle Scholar
  94. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3(2A):315CrossRefGoogle Scholar
  95. Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99(9):3491–3498PubMedCrossRefGoogle Scholar
  96. Ravindranath SP, Mauer LJ, Deb-Roy C, Irudayaraj J (2009) Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal Chem 81(8):2840–2846PubMedCrossRefGoogle Scholar
  97. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627PubMedCrossRefGoogle Scholar
  98. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098CrossRefPubMedGoogle Scholar
  99. Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N 2 fixation of rice (Oryza sativa L.). Plant Soil 302(1–2):249–261CrossRefGoogle Scholar
  100. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566PubMedGoogle Scholar
  101. Rosenman G, Beker P, Koren I, Yevnin M, Bank-Srour B, Mishina E, Semin S (2011) Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. J Pept Sci 17(2):75–87PubMedCrossRefGoogle Scholar
  102. Ruamps LS, Nunan N, Pouteau V, Leloup J, Raynaud X, Roy V, Chenu C (2013) Regulation of soil organic C mineralisation at the pore scale. FEMS Microbiol Ecol 86(1):26–35PubMedCrossRefGoogle Scholar
  103. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, pp 73–97Google Scholar
  105. Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26(4):556–565CrossRefGoogle Scholar
  106. Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798PubMedCrossRefGoogle Scholar
  107. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3(3–4):22–30CrossRefGoogle Scholar
  108. Schmidt H, Eickhorst T (2014) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. FEMS Microbiol Ecol 87(2):390–402PubMedCrossRefGoogle Scholar
  109. Sebastianelli A, Sen T, Bruce IJ (2008) Extraction of DNA from soil using nanoparticles by magnetic bioseparation. Lett Appl Microbiol 46(4):488–491PubMedCrossRefGoogle Scholar
  110. Selvakumar G, Mohan M, Kundu S, Gupta A, Joshi P, Nazim S, Gupta H (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175PubMedCrossRefGoogle Scholar
  111. Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042PubMedCrossRefGoogle Scholar
  112. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin\Heidelberg, pp 3–22CrossRefGoogle Scholar
  113. Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89(1):92–99PubMedCrossRefGoogle Scholar
  114. Singh AK, Senapati D, Wang S, Griffin J, Neely A, Naylor KM, Varisli B, Kalluri JR, Ray PC (2009) Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 3(7):1906–1912PubMedPubMedCentralCrossRefGoogle Scholar
  115. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519(3):1156–1159CrossRefGoogle Scholar
  116. Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: A reservoir of novel genes and metabolites. Plant Gene. Scholar
  117. Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH (2013) Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 5(19):9322–9329PubMedCrossRefGoogle Scholar
  118. Sure S, Ackland ML, Gaur A, Gupta P, Adholeya A, Kochar M (2016a) Probing synechocystis-arsenic interactions through extracellular nanowires. Front Microbiol 7:1134PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sure S, Ackland ML, Torriero AAJ, Adholeya A, Kochar M (2016b) Microbial nanowires: an electrifying tale. Microbiology 162:2017–2028CrossRefGoogle Scholar
  120. Sutarlie L, Ow SY, Su X (2017) Nanomaterials-based biosensors for detection of microorganisms and microbial toxins. Biotechnol J 12(4): 1500459.Google Scholar
  121. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204PubMedCrossRefGoogle Scholar
  122. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760PubMedCrossRefGoogle Scholar
  123. Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123(21):5164–5165PubMedCrossRefGoogle Scholar
  124. Tiedje J, Cho J, Murray A, Treves D, Xia B, Zhou J (2001) Soil teeming with life: new frontiers for soil science. In: Sustainable management of soil organic matter. CABI Int’l, Wallingford, pp 393–412CrossRefGoogle Scholar
  125. Torsvik V (1994) Use of DNA analysis to determine the diversity of microbial communities. In: Beyond the biomass: compositional and functional analysis of soil microbial communities, Wiley-VCH, pp 39–48Google Scholar
  126. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17(3–4):170–178Google Scholar
  127. Tsavkelova E, Cherdyntseva T, Netrusov A (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74(1):46–53CrossRefGoogle Scholar
  128. Uslu B, Ozkan SA (2007) Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal Lett 40(5):817–853CrossRefGoogle Scholar
  129. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21PubMedCrossRefGoogle Scholar
  130. Verma A, Kukreja K, Pathak D, Suneja S, Narula N (2001) In vitro production of plant growth regulators (PGRs) by. Indian J Microbiol 41:305–307Google Scholar
  131. Verma MS, Chen PZ, Jones L, Gu FX (2014) “Chemical nose” for the visual identification of emerging ocular pathogens using gold nanostars. Biosens Bioelectron 61:386–390PubMedCrossRefGoogle Scholar
  132. Verma MS, Wei S-C, Rogowski JL, Tsuji JM, Chen PZ, Lin C-W, Jones L, Gu FX (2016) Interactions between bacterial surface and nanoparticles govern the performance of “chemical nose” biosensors. Biosens Bioelectron 83:115–125PubMedCrossRefGoogle Scholar
  133. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586CrossRefGoogle Scholar
  134. Vivas A, Biro B, Ruiz-Lozano J, Barea J, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533PubMedCrossRefGoogle Scholar
  135. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828PubMedCrossRefGoogle Scholar
  136. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wani P, Khan M, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55(3):315–323CrossRefGoogle Scholar
  138. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci 100(22):12984–12988PubMedCrossRefGoogle Scholar
  139. Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107PubMedCrossRefGoogle Scholar
  141. Zahir Z, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294PubMedCrossRefGoogle Scholar
  142. Zhang W, Yang T, Huang D, Jiao K, Li G (2008a) Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J Membr Sci 325(1):245–251CrossRefGoogle Scholar
  143. Zhang W, Yang T, Huang DM, Jiao K (2008b) Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett 19(5):589–591CrossRefGoogle Scholar
  144. Zhu N, Chang Z, He P, Fang Y (2005) Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal Chim Acta 545(1):21–26CrossRefGoogle Scholar
  145. Ziegler C, Göpel W (1998) Biosensor development. Curr Opin Chem Biol 2(5):585–591PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Poonam Sashidhar
    • 1
  • Mukul Kumar Dubey
    • 1
  • Mandira Kochar
    • 1
    Email author
  1. 1.TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram Faridabad RoadGurugramIndia

Personalised recommendations