Advertisement

Vertebrate Scavenging Communities

  • Nuria Selva
  • Marcos Moleón
  • Esther Sebastián-González
  • Travis L. DeVault
  • Maria Martina Quaggiotto
  • David M. Bailey
  • Sergio A. Lambertucci
  • Antoni Margalida
Chapter
Part of the Wildlife Research Monographs book series (WIREMO, volume 2)

Abstract

A scavenger is an animal that feeds on the carcass or remains of any dead animal which it did not participate in its killing. Scavenging is pervasive across the animal kingdom and almost all predator species use carrion to a certain extent in both terrestrial and aquatic ecosystems. There is a group of animals, the obligate scavengers, which rely (almost) entirely on carrion. Among vertebrates, only birds have evolved into obligate scavengers, namely vultures, which suggests that the costs of adaptation to obligate scavenging are high. Obligate and facultative scavengers exhibit a wide array of adaptations to locate and exploit carrion across systems, including inexpensive locomotion to find the unpredictable carrion on savannas, caching carrion in cold tundra or chemotaxis in aquatic systems. Traditionally viewed as an opportunistic process, particularly for facultative scavengers, carrion consumption by vertebrates often follows complex and structured patterns and is crucial in maintaining the stability and structure of food webs.

Keywords

Adaptations Aquatic ecosystems Facultative scavenging Forests Nestedness Obligate scavenging Savannah Steppe Tundra 

Notes

Acknowledgements

The authors sincerely thank Alexander Gruzdev, Dan Hartman, Sarah C. Jones, Lama Rinczen and Manuel de la Riva for their pictures.

References

  1. Allen ML, Elbroch LM, Wilmers CC et al (2014) Trophic facilitation or limitation? Comparative effects of pumas and black bears on the scavenger community. PLoS ONE 9(7):e102257PubMedPubMedCentralCrossRefGoogle Scholar
  2. Attwell RIG (1963) Some observations on feeding habits, behavior and inter-relationships of Northern Rhodesian vultures. Ostrich 34:235–247CrossRefGoogle Scholar
  3. Baber MJ, Fleishman E, Babbitt KJ et al (2004) The relationship between wetland hydroperiod and nestedness patterns in assemblages of larval amphibians and predatory macroinvertebrates. Oikos 107:16–27CrossRefGoogle Scholar
  4. Bagley P, Smith A, Priede I (1994) Tracking movements of deep demersal fishes in the Porcupine seabight, north-east Atlantic Ocean. J Mar Biol Assoc 74:473–480CrossRefGoogle Scholar
  5. Bagley P, Priede I, Amieson A et al (2004) Lander techniques for deep-ocean biological research. Int J Soc Underw Technol 26:3–12CrossRefGoogle Scholar
  6. Bailey D, Priede I (2002) Predicting fish behaviour in response to abyssal food falls. Mar Biol 141:831–840CrossRefGoogle Scholar
  7. Bailey D, Wagner H, Jamieson A et al (2007) A taste of the deepsea: the roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus. Deep Sea Res Part I Oceanogr Res Pap 54:99–108CrossRefGoogle Scholar
  8. Balcolm R (1986) Songbird carcasses disappear rapidly from agricultural fields. Auk 103:817–820Google Scholar
  9. Barbar F, Werenkraut V, Morales JM et al (2015) Emerging ecosystems change the spatial distribution of top carnivores even in poorly populated areas. PLoS One 10(3):e0118851PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barnosky AD, Koch PL, Feranec RS et al (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306:70–75PubMedCrossRefGoogle Scholar
  11. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  12. Bascompte J, Jordano P, Melián CJ et al (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bastolla U, Fortuna MA, Pascual-García A et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020PubMedCrossRefGoogle Scholar
  14. Beasley JC, Olson ZH, DeVault TL (2015) Ecological role of vertebrate scavengers. In: Benbow ME, Tomberlin J, Tarone A (eds) Carrion ecology, evolution, and their application. CRC Press, Boca Raton, pp 107–128CrossRefGoogle Scholar
  15. Bentzen TW, Follman EH, Amstrup SC et al (2007) Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis. Can J Zool 85:596–608CrossRefGoogle Scholar
  16. Blumenschine RJ, Cavallo JA (1992) Scavenging and human evolution. Sci Am 267:70–76CrossRefGoogle Scholar
  17. Bonfil R, Francis MP, Duffy C et al (2010) Large-scale tropical movements and diving behavior of white sharks Carcharodon carcharias tagged off New Zealand. Aquat Biol 8:115–123CrossRefGoogle Scholar
  18. Brown OJF, Field J, Letnic M (2006) Variation in the taphonomic effect of scavengers in semi-arid Australia linked to rainfall and the El Niño Southern Oscillation. Int J Osteoarchaeol 16:165–176CrossRefGoogle Scholar
  19. Brown M, Schlacher T, Schoeman D et al (2016) Invasive carnivores alter ecological function and enhance complementarity in scavengers assemblages on ocean beaches. Ecology 96:2715–2725CrossRefGoogle Scholar
  20. Bruyn PJN, Cooper J (2005) Who’s the boss? Giant petrel arrival times and interspecific interactions at a seal carcass at sub-Antarctic Marion Island. Polar Biol 28:571–573CrossRefGoogle Scholar
  21. Buckley NJ (1996) Food finding and the influence of information, local enhancement, and communal roosting on foraging success of North American vultures. Auk 113:473–488CrossRefGoogle Scholar
  22. Bull JJ, Jessop TS, Whiteley M (2010) Deathly drool: evolutionary and ecological basis of septic bacteria in Komodo dragon mouths. PLoS ONE 5(6):e11097PubMedPubMedCentralCrossRefGoogle Scholar
  23. Careau V, Giroux JF, Berteaux D (2007) Cache and carry: hoarding behaviour of Arctic fox. Behav Ecol Sociobiol 62:87–96CrossRefGoogle Scholar
  24. Carrete M, Lambertucci SA, Speziale K et al (2010) Winners and losers in human-made habitats: interspecific competition outcomes in two Neotropical vultures. Anim Conserv 13:390–398CrossRefGoogle Scholar
  25. Chapman FM (1929) My tropical air castle. D Appleton-Century Co, New YorkGoogle Scholar
  26. Coleman JS, Fraser JD (1987) Food habits of black and turkey vultures in Pennsylvania and Maryland. J Wildl Manag 51:733–739CrossRefGoogle Scholar
  27. Cook RR, Angermeier PL, Finn DS et al (2004) Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia. Oecologia 140:639–649PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cortés-Avizanda A, Carrete M, Donázar JA (2010) Managing supplementary feeding for avian scavengers: guidelines for optimal design using ecological criteria. Biol Conserv 143:1707–1715CrossRefGoogle Scholar
  29. Cortés-Avizanda A, Jovani R, Carrete M et al (2012) Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: a field experiment. Ecology 93:2570–2579CrossRefGoogle Scholar
  30. Cortés-Avizanda A, Jovani R, Donázar JA et al (2014) Bird sky networks: how do avian scavengers use social information to find carrion? Ecology 95:1799–1808CrossRefGoogle Scholar
  31. Culloch R (2012) Short note: observations from video footage of red fox (Vulpes vulpes) activity within a grey seal (Halichoerus grypus) breeding colony on the UK Mainland. Aquat Mamm 38:81–85CrossRefGoogle Scholar
  32. Curtis TH, Kelly JT, Menard KL et al (2006) Observations on the behavior of white sharks scavenging from a whale carcass at Point Reyes, California. Calif Fish Game 92:113–124Google Scholar
  33. da Diefenbach CO (1975) Gastric function in Caiman crocodilus (Crocodylia: Reptilia)—I. Rate of gastric digestion and gastric motility as a function of temperature. Comp Biochem Physiol A 51(2):259–265PubMedCrossRefPubMedCentralGoogle Scholar
  34. Deinet S, Ieronymidou C, McRae L et al (2013) Wildlife comeback in Europe: the recovery of selected mammal and bird species. Final report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council, LondonGoogle Scholar
  35. Del Hoyo J (1994) In: Elliott A, Sargatal J (eds) New world vultures to guineafowl. Handbook of the birds of the world, vol 2. Lynx Edicions, BarcelonaGoogle Scholar
  36. DeVault TL, Krochmal AR (2002) Scavenging by snakes: an examination of the literature. Herpetologica 58:429–436CrossRefGoogle Scholar
  37. DeVault TL, Rhodes OE (2002) Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol 47:185–192CrossRefGoogle Scholar
  38. DeVault TL, Rhodes OE Jr, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234CrossRefGoogle Scholar
  39. DeVault TL, Brisbin IL, Rhodes OE (2004) Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool 82:502–509CrossRefGoogle Scholar
  40. DeVault TL, Olson ZH, Beasley JC et al (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274CrossRefGoogle Scholar
  41. Dicken ML (2008) First observations of young of the year and juvenile great white sharks (Carcharodon carcharias) scavenging from a whale carcass. Mar Freshw Res 59:596–602CrossRefGoogle Scholar
  42. Donázar JA, Margalida A, Campión D (eds) (2009) Vultures, feeding stations and sanitary legislation: a conflict and its consequences from the perspective of conservation biology, Munibe 29 (Suppl). Sociedad de Ciencias Aranzadi, San SebastiánGoogle Scholar
  43. Dudley SF, Anderson-Reade MD, Thompson GS et al (2000) Concurrent scavenging off a whale carcass by great white sharks, Carcharodon carcharias, and tiger sharks, Galeocerdo cuvier. Fish Bull Ocean Atmos Adm 98:646–649Google Scholar
  44. Dunlop K, Scott M, Parsons D et al (2015) Do agonistic behaviours bias baited remote underwater video surveys of fish? Mar Ecol 36:810–818CrossRefGoogle Scholar
  45. Elbroch LM, Wittmer HU (2012) Table scraps: inter-trophic food provisioning by pumas. Biol Lett 8:776–779PubMedPubMedCentralCrossRefGoogle Scholar
  46. Elbroch LM, Wittmer HU (2013) Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia? PLoS ONE 8(1):e53595PubMedPubMedCentralCrossRefGoogle Scholar
  47. Eliotout B (2007) Le vautour fauve. Delachaux et niestlé, LausanneGoogle Scholar
  48. Fallows C, Gallagher A, Hammerschlag N (2013) White sharks (Carcharodon carcharias) scavenging on whales and its potential role in further shaping the ecology of an apex predator. PLoS ONE 8(4):e60797PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fortin JK, Farley SD, Rode KD et al (2007) Dietary and spatial overlap between sympatric ursids relative to salmon use. Ursus 18:19–29CrossRefGoogle Scholar
  50. Gallagher A, Jackson T, Hammerschlag N (2011) Occurrence of tiger shark (Galeocerdo cuvier) scavenging on avian prey and its possible connection to large-scale bird die-off in the Florida Keys. Fla Sci 4:264–269Google Scholar
  51. Gilchrist HG, Robertson GJ (2000) Observations of marine birds and mammals wintering at polynyas and ice edges in the Belcher Islands, Nunavut, Canada. Arctic 53:61–68CrossRefGoogle Scholar
  52. Gjertz I, Lydersen C (1986) Polar bear predation on ringed seals in the fast-ice of Hornsund, Svalbard. Polar Res 4:65–68CrossRefGoogle Scholar
  53. Godø O, Huse I, Michalsen K (1997) Bait defence behaviour of wolffish and its impact on long-line catch rates. ICES J Mar Sci 54:272–275CrossRefGoogle Scholar
  54. González-Solís J, Croxall JP, Briggs DR (2002) Activity patterns of giant petrels, Macronectes spp., using different foraging strategies. Mar Biol 140:197–204CrossRefGoogle Scholar
  55. Green GI, Mattson DJ, Peek JM (1997) Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J Wildl Manag 61:1040–1055CrossRefGoogle Scholar
  56. Green RE, Newton I, Shultz S et al (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41:793–800CrossRefGoogle Scholar
  57. Guarino F (2001) Diet of a large carnivorous lizard, Varanus varius. Wildl Res 28:627–630CrossRefGoogle Scholar
  58. Heinrich B (1988) Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav Ecol Sociobiol 23:141–156CrossRefGoogle Scholar
  59. Heinrich B, Marzluff JM, Marzluff CS (1993) Common ravens are attracted by appeasement calls of food discoverers when attacked. Auk 110:247–254Google Scholar
  60. Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75:1074–1084CrossRefGoogle Scholar
  61. Hertel F, Lehman N (1998) A randomized nearest-neighbor approach for assessment of character displacement: the vulture guild as a model. J Theor Biol 190:51–61PubMedCrossRefGoogle Scholar
  62. Hilderbrand GV, Schwartz CC, Robbins CT et al (1999) The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can J Zool 77:132–138CrossRefGoogle Scholar
  63. Hiraldo F, Blanco JC, Bustamante J (1991) Unspecialized exploitation of small carcasses by birds. Bird Study 38:200–207CrossRefGoogle Scholar
  64. Houston DC (1974) The role of griffon vultures Gyps africanus and Gyps rüpellii as scavengers. J Zool 172:35–46CrossRefGoogle Scholar
  65. Houston DC (1975) Ecological isolation of African scavenging birds. Ardea 63:55–64Google Scholar
  66. Houston DB (1978) Elk as winter-spring food for carnivores in northern Yellowstone National Park. J Appl Ecol 15:653–661CrossRefGoogle Scholar
  67. Houston DC (1979) The adaptations of scavengers. In: Sinclair ARE, Griffiths MN (eds) Serengeti, dynamics of an ecosystem. University of Chicago Press, Chicago, pp 263–286Google Scholar
  68. Houston DC (1983) The adaptive radiation of griffon vultures. In: Wilbur SR, Jackson JA (eds) Vulture biology and management. University of California Press, Berkeley, pp 135–152Google Scholar
  69. Houston DC (1984) Does the king vulture Sarcoramphus papa use a sense of smell to locate food? Ibis 126:67–69CrossRefGoogle Scholar
  70. Houston DC (1986) Scavenging efficiency of turkey vultures in tropical forest. Condor 88:318–323CrossRefGoogle Scholar
  71. Houston DC (1988) Competition for food between neotropical vultures in forest. Ibis 130:402–417CrossRefGoogle Scholar
  72. Houston DC (2001) Vultures and condors. Clin Baxter Photography Ltd, Grantown-on-SpeyGoogle Scholar
  73. Houston DC, Cooper JE (1975) The digestive tract of the white-back griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis 11:306–313PubMedCrossRefGoogle Scholar
  74. Huijbers CM, Schlacher TA, Schoeman DS et al (2013) Urbanisation alters processing of marine carrion on sandy beaches. Landsc Urban Plan 119:1–8CrossRefGoogle Scholar
  75. Huijbers CM, Schlacher TA, Schoeman DS et al (2015) Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers Distrib 21:55–63CrossRefGoogle Scholar
  76. Hunter S (1985) The role of giant petrels in the Southern Ocean ecosystem. In: Siegfried WR, Laws RM, Condy PR (eds) Antarctic nutrient cycles and food webs. Springer, New York, pp 534–542CrossRefGoogle Scholar
  77. Hunter S (1991) The impact of avian predator-scavengers on king penguin Aptenodytes patagonicus chicks at Marion Island. Ibis 133:343–350CrossRefGoogle Scholar
  78. Isaacs J, Schwartzlose R (1975) Active animals of the deep-sea floor. Sci Am 233:85–91CrossRefGoogle Scholar
  79. Jackson AL, Ruxton GD, Houston DC (2008) The effect of social facilitation on foraging success in vultures: a modelling study. Biol Lett 4:311–313CrossRefGoogle Scholar
  80. Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities. The Białowieża Primeval Forest as a case study. Springer, BerlinCrossRefGoogle Scholar
  81. Jędrzejewski W, Zalewski A, Jędrzejewska B (1993) Foraging by pine marten Martes martes in relation to food resources in Białowieża National Park, Poland. Acta Theriol 38:405–426CrossRefGoogle Scholar
  82. Jones E, Collins M, Bagley P et al (1998) The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal north-east Atlantic Ocean. Proc R Soc B 265:1119–1127CrossRefGoogle Scholar
  83. Kane A, Jackson AL, Ogada DL et al (2014) Vultures acquire information on carcass location from scavenging eagles. Proc R Soc B 281:20141072CrossRefGoogle Scholar
  84. Kane A, Healy K, Ruxton GD et al (2016) Body size as a driver of scavenging in theropod dinosaurs. Am Nat 187:706–716PubMedCrossRefGoogle Scholar
  85. Kelly NE, Sparks DW, DeVault TL et al (2007) Diet of black and turkey vultures in a forested landscape. Wilson J Ornithol 119:267–270CrossRefGoogle Scholar
  86. Kendall C (2013) Alternative strategies in avian scavengers: how subordinate species foil the despotic distribution. Behav Ecol Sociobiol 67:383–393CrossRefGoogle Scholar
  87. Kendall C, Virani MZ, Kirui P et al (2012) Mechanisms of coexistence in vultures: understanding the patterns of vulture abundance at carcasses in Masai Mara National Reserve, Kenya. Condor 114:523–531CrossRefGoogle Scholar
  88. Killengreen ST, Lecomte N, Ehrich E et al (2011) The importance of marine vs. human induced subsidies in the maintenance of an expanding mesocarnivore in the Arctic tundra. J Anim Ecol 80:1049–1060PubMedCrossRefGoogle Scholar
  89. Killengreen ST, Strømseng E, Yoccoz NG et al (2012) How ecological neighbourhoods influence the structure of the scavenger guild in low arctic tundra. Divers Distrib 18:563–574CrossRefGoogle Scholar
  90. Knight SK, Knight RL (1983) Aspects of food finding by wintering bald eagles. Auk 100:477–484Google Scholar
  91. König C (1974) On the behaviour of vultures on carcasses in Spain. J Ornithol 115:289–320CrossRefGoogle Scholar
  92. Koskela A, Kojola I, Aspi J et al (2013) Effect of reproductive status on the diet composition of wolverines (Gulo gulo) in boreal forests of eastern Finland. Ann Zool Fenn 50:100–106CrossRefGoogle Scholar
  93. Kostecke RM, Linz GM, Bleier WJ (2001) Survival of avian carcasses and photographic evidence of predators and scavengers. J Field Ornithol 72:439–447CrossRefGoogle Scholar
  94. Krofel M, Kos I, Jerina K (2012) The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behav Ecol Sociobiol 66:1297–1304CrossRefGoogle Scholar
  95. Kruuk H (1966) Clan-system and feeding habits of spotted hyaenas (Crocuta crocuta Erxleben). Nature 209:1257–1258CrossRefGoogle Scholar
  96. Kruuk H (1967) Competition for food between vultures in East Africa. Ardea 55:171–193Google Scholar
  97. Kruuk H (1972) The spotted hyaena. A study of predation and social behavior. University of Chicago Press, ChicagoGoogle Scholar
  98. Kuhn B, Wiesel I, Skinner J (2008) Diet of brown hyaenas (Parahyaena brunnea) on the Namibian coast. Trans R Soc S Afr 63:1–8CrossRefGoogle Scholar
  99. Lambertucci SA, Speziale KL, Rogers TE et al (2009a) How do roads affect the habitat use of an assemblage of scavenging raptors? Biodivers Conserv 18:2063–2074CrossRefGoogle Scholar
  100. Lambertucci SA, Trejo A, Di Martino S et al (2009b) Spatial and temporal patterns in the diet of the Andean condor: ecological replacement of native fauna by exotic species. Anim Conserv 12:338–345CrossRefGoogle Scholar
  101. Lambertucci SA, Navarro J, Sanchez Zapata JA, Hobson KA, Alarcón PAE, Wiemeyer G, Blanco G, Hiraldo F, Donázar JA (2018) Tracking data and retrospective analyses of diet reveal the consequences of loss of marine subsidies for an obligate scavenger, the Andean condor. Proc R Soc B Biol Sci 285(1879):20180550CrossRefGoogle Scholar
  102. Levi T, Wheat RE, Allen JM et al (2015) Differential use of salmon by vertebrate consumers: implications for conservation. PeerJ 3:e1157PubMedPubMedCentralCrossRefGoogle Scholar
  103. Linz GM, Bergman DL, Bleier WJ (1997) Estimating survival of song bird carcasses in crops and woodland. Prairie Nat 29:7–13Google Scholar
  104. Løkkeborg S (1998) Feeding behaviour of cod, Gadus morhua: activity rhythm and chemically mediated food search. Anim Behav 56:371–378PubMedCrossRefPubMedCentralGoogle Scholar
  105. Long D, Jones R (1996) White shark predation and scaveging on cetaceans in the Eastern North Pacific Ocean. In: Kimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic, San Diego, pp 293–307CrossRefGoogle Scholar
  106. Lowry LF, Burns JJ, Nelson RR (1987) Polar bear, Ursus maritimus, predation on belugas, Delphinapterus leucas, in the Bering and Chukchi Seas. Can Field Nat 101:141–146Google Scholar
  107. MaMing R, Xu G (2015) Status and threats to vultures in China. Vulture News 68:3–24CrossRefGoogle Scholar
  108. MaMing R, Lee L, Yang X, Buzzard P (2016) Vultures and sky burials on the Qinghai-Tibet plateau. Vulture News 71:22–35CrossRefGoogle Scholar
  109. Margalida A, Colomer MA (2012) Modelling the effects of sanitary policies on European vulture conservation. Sci Rep 2:753PubMedPubMedCentralCrossRefGoogle Scholar
  110. Margalida A, Heredia R (eds) (2005) Biología de la conservación del quebrantahuesos (Gypaetus barbatus) en España. Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  111. Margalida A, Carrete M, Sánchez-Zapata JA et al (2012) Good news for European vultures. Science 335:284PubMedCrossRefPubMedCentralGoogle Scholar
  112. Margalida A, Bogliani G, Bowden C et al (2014) One health approach to use of pharmaceuticals. Science 346:1296–1298PubMedCrossRefGoogle Scholar
  113. Margalida A, Colomer MA, Sánchez R et al (2017) Behavioral evidence of hunting and foraging techniques by a top predator suggests the importance of scavenging for pre-adults. Ecol Evol 7:4192–4199PubMedPubMedCentralCrossRefGoogle Scholar
  114. Martin PS (1989) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions. University of Arizona Press, Tucson, pp 354–403Google Scholar
  115. Marzluff JM, Heinrich B (1991) Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim Behav 42:755–770CrossRefGoogle Scholar
  116. Marzluff JM, Heinrich B, Marzluff CS (1996) Raven roosts are mobile information centres. Anim Behav 51:89–103CrossRefGoogle Scholar
  117. Mateo-Tomás P, Olea PP, Moleón M et al (2015) From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers Distrib 21:913–924CrossRefGoogle Scholar
  118. Mattisson J, Andrén H, Persson J et al (2011) Influence of intraguild interactions on resource use by wolverines and Eurasian lynx. J Mammal 92:1321–1330CrossRefGoogle Scholar
  119. Matyushkin EN (1974) Large carnivores and scavengers of the middle Sikhote-Alin. Bulleten Moskovskogo Obshchestva Ispytatelei Prirody 79:5–21Google Scholar
  120. Moleón M, Sánchez-Zapata JA, Margalida A et al (2014a) Humans and scavengers: the evolution of interactions and ecosystem services. Bioscience 64:394–403CrossRefGoogle Scholar
  121. Moleón M, Sánchez-Zapata JA, Selva N et al (2014b) Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol Rev 89:1042–1054PubMedPubMedCentralCrossRefGoogle Scholar
  122. Moleón M, Sánchez-Zapata JM, Sebastián-González E et al (2015) Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124:1391–1403CrossRefGoogle Scholar
  123. Moreno-Opo R, Margalida A (2013) Carcasses provide resources not exclusively to scavengers: patterns of carrion exploitation by passerine birds. Ecosphere 4:105CrossRefGoogle Scholar
  124. Moreno-Opo R, Trujillano A, Arredondo A et al (2015a) Manipulating size, amount and appearance of food inputs to optimize supplementary feeding programs for European vultures. Biol Conserv 181:27–35CrossRefGoogle Scholar
  125. Moreno-Opo R, Trujillano A, Margalida A (2015b) Optimization of supplementary feeding programs for European vultures depend on environmental and management factors. Ecosphere 6:127CrossRefGoogle Scholar
  126. Moreno-Opo R, Trujillano A, Margalida A (2016) Behavioral coexistence and feeding efficiency drive niche partitioning in European avian scavengers. Behav Ecol 27:1041–1052CrossRefGoogle Scholar
  127. Moss B (2017) Marine reptiles, birds and mammals and nutrient transfers among the seas and the land: an appraisal of current knowledge. J Exp Mar Biol Ecol 492:63–80CrossRefGoogle Scholar
  128. Novaro AJ, Funes MC, Walker RS (2000) Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biol Conserv 92:25–33CrossRefGoogle Scholar
  129. O’Sullivan WM, Sleeman DP, Murphy DM (1992) Otters Lutra lutra feeding on carrion. Ir Nat 24:140–143Google Scholar
  130. Olson ZH, Beasley JC, Rhodes OE (2016) Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11(2):e0147798PubMedPubMedCentralCrossRefGoogle Scholar
  131. Oro D, Genovart M, Tavecchia G et al (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514PubMedPubMedCentralCrossRefGoogle Scholar
  132. Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661CrossRefGoogle Scholar
  133. Pavés H, Schlatter R, Espinoza C (2008) Scavenging and predation by black vultures Coragyps atratus at a South American sea lion breeding colony. Vulture News 58:4–15Google Scholar
  134. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  135. Payne LX, Moore JW (2006) Mobile scavengers create hotspots of freshwater productivity. Oikos 115:69–80CrossRefGoogle Scholar
  136. Pennycuick CJ (1983) Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus occidentalis and Coragyps atratus. J Exp Biol 102:307–325Google Scholar
  137. Pereira LM, Owen-Smith N, Moleón M (2014) Facultative predation and scavenging by mammalian carnivores. Mammal Rev 44:44–55CrossRefGoogle Scholar
  138. Peterson CA, Lee SL, Elliott JE (2001) Scavenging of waterfowl carcasses by birds in agricultural fields of British Columbia. J Field Ornithol 72:150–159CrossRefGoogle Scholar
  139. Petrides GA (1959) Competition for food between five species of East African vultures. Auk 76:104–106CrossRefGoogle Scholar
  140. Phillips RA, Phalan B, Forster IP (2004) Diet and long-term changes in population size and productivity of brown skuas Catharacta antarctica lonnbergi at Bird Island, South Georgia. Polar Biol 27:555–561CrossRefGoogle Scholar
  141. Platt SG, Rainwater TR, Snider S et al (2007) Consumption of large mammals by Crocodylus moreletii: field observations of necrophagy and interspecific kleptoparasitism. Southwest Nat 52:310–317CrossRefGoogle Scholar
  142. Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423CrossRefGoogle Scholar
  143. Prior KA, Weatherhead PJ (1991) Competition at the carcass: opportunities for social foraging by turkey vultures in southern Ontario. Can J Zool 69:1550–1556CrossRefGoogle Scholar
  144. Quaggiotto M-M, Barton PS, Morris C et al (2018) Seal carrion is a predictable resource for coastal ecosystems. Acta Oecol 88:41–51CrossRefGoogle Scholar
  145. Raichev EG, Tsunoda H, Newman C et al (2013) The reliance of the golden jackal (Canis aureus) on anthropogenic foods in winter in central Bulgaria. Mamm Study 38:19–27CrossRefGoogle Scholar
  146. Ray R–R, Seibold H, Heurich M (2014) Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim Biodivers Conserv 37(1):77–88Google Scholar
  147. Read JL, Wilson D (2004) Scavengers and detritivores of kangaroo harvest offcuts in arid Australia. Wildl Res 31:51–56CrossRefGoogle Scholar
  148. Rogers AM, Gibson MR, Pockette T et al (2014) Scavenging of migratory bird carcasses in the Sonoran desert. Southwest Nat 59:544–549CrossRefGoogle Scholar
  149. Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345:1253497PubMedCrossRefGoogle Scholar
  150. Ronconi RA, Steenweg RJ, Taylor PD et al (2014) Gull diets reveal dietary partitioning and ecosystem changes at a remote colony. Mar Ecol Prog Ser 514:247–261CrossRefGoogle Scholar
  151. Rose M, Polis G (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007CrossRefGoogle Scholar
  152. Roth JD (2002) Temporal variability in arctic fox diet as reflected in stable carbon isotopes; the importance of sea ice. Oecologia 133:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ruxton GD, Houston DC (2003) Could Tyrannosaurus rex have been a scavenger rather than a predator? An energetics approach. Proc R Soc Lond B 270:731–733CrossRefGoogle Scholar
  154. Ruxton GD, Houston DC (2004) Obligate vertebrate scavengers must be large soaring fliers. J Theor Biol 228:431–436CrossRefGoogle Scholar
  155. Samelius G, Alisauskas RT, Hobson KA et al (2007) Prolonging the arctic pulse: long-term exploitation of cached eggs by Arctic foxes when lemmings are scarce. J Anim Ecol 76:873–880PubMedCrossRefPubMedCentralGoogle Scholar
  156. Sánchez R, Margalida A, González LM et al (2009) Temporal and spatial differences in the feeding ecology of the Spanish imperial eagle Aquila adalberti during the non-breeding season: effects of the rabbit population crash. Acta Ornithol 44:53–58CrossRefGoogle Scholar
  157. Sánchez-Zapata JA, Eguía S, Blázquez M et al (2010) Unexpected role of ungulate carcasses in the diet of golden eagles Aquila chrysaetos in Mediterranean mountains. Bird Study 57:352–360CrossRefGoogle Scholar
  158. Schindler DE, Armstrong JB, Bentley KT et al (2013) Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biol Lett 9:20130048PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sebastián-González E, Sánchez-Zapata JA, Donázar JA et al (2013) Interactive effects of obligate scavengers and scavenger community richness on lagomorph carcass consumption patterns. Ibis 155:881–885CrossRefGoogle Scholar
  160. Sebastián-González E, Moleón M, Gibert JP et al (2016) Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97:95–105PubMedPubMedCentralCrossRefGoogle Scholar
  161. Selva N (2004) The role of scavenging in the predator community of Białowieża Primeval Forest (E Poland). PhD thesis, University of Sevilla, SpainGoogle Scholar
  162. Selva N, Fortuna MA (2007) The nested structure of a scavenger community. Proc R Soc B 274:1101–1108PubMedCrossRefGoogle Scholar
  163. Selva N, Jędrzejewska B, Jędrzejewski W et al (2003) Scavenging on European bison carcasses in Białowieża Primeval Forest (eastern Poland). Ecoscience 10:303–311CrossRefGoogle Scholar
  164. Selva N, Jedrzejewska B, Jedrzejewski W et al (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601CrossRefGoogle Scholar
  165. Shepard EL, Lambertucci SA (2013) From daily movements to population distributions: weather affects competitive ability in a guild of soaring birds. J R Soc Interface 10:20130612CrossRefGoogle Scholar
  166. Shivik JA (2006) Are vultures birds, and do snakes have venom, because of macro- and microscavenger conflict? Bioscience 56:819–823CrossRefGoogle Scholar
  167. Skinner JD, Chimimba CT (2005) The mammals of the Southern African subregion. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  168. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354Google Scholar
  169. Spiller DA, Piovia-Scorr J, Wright AN et al (2010) Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–1434PubMedCrossRefPubMedCentralGoogle Scholar
  170. Stahler D, Heinrich B, Smith D (2002) Common ravens, Corvus corax, preferentially associate with grey wolves, Canis lupus, as a foraging strategy in winter. Anim Behav 64:283–290CrossRefGoogle Scholar
  171. Stirling I, Archibald WR (1977) Aspects of predation of seals by polar bears. J Fish Res Board Can 34:1126–1129CrossRefGoogle Scholar
  172. Stoddart LC (1970) A telemetric method for detecting jackrabbit mortality. J Wildl Manag 34:501–507CrossRefGoogle Scholar
  173. Stoner A (2004) Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. J Fish Biol 65:1445–1471CrossRefGoogle Scholar
  174. Swihart RK, Gehring TM, Kolozsvary MB et al (2003) Response of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers Distrib 9:1–18CrossRefGoogle Scholar
  175. Tenney S (1877) A few words about scavengers. Am Nat 11:129–135CrossRefGoogle Scholar
  176. Terrasse JF (2001) Le gypaète barbu. Delachaux et niestlé, LausanneGoogle Scholar
  177. Tobin ME, Dolbeer RA (1990) Disappearance and recoverability of songbird carcasses in fruit orchards. J Field Ornithol 61:237–242Google Scholar
  178. Travaini A, Donazar JA, Rodriguez A et al (1998) Use of European hare (Lepus europaeus) carcasses by an avian scavenging assemblage in Patagonia. J Zool 246:175–181CrossRefGoogle Scholar
  179. Twiss SD, Duck C, Pomeroy PP (2003) Grey seal (Halichoerus grypus) pup mortality not explained by local breeding density on North Rona, Scotland. J Zool 259:83–91CrossRefGoogle Scholar
  180. Vogeley W (1999) Use of carcasses by Cape griffons Gyps coprotheres and food competition – observations at a vulture restaurant in south-eastern Botswana. Ornithol Beobachter 96:13–23Google Scholar
  181. Wallace MP, Temple SA (1987) Competitive interactions within and between speies in a guild of avian scavengers. Auk 104:290–295Google Scholar
  182. Waters CN, Zalasiewicz J, Summerhayes C et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622PubMedCrossRefGoogle Scholar
  183. Weldon PJ, Ferguson MWJ (1993) Chemoreception in crocodilians: anatomy, natural history, and empirical results. Brain Behav Evol 41:239–245PubMedCrossRefGoogle Scholar
  184. Weldon PJ, Swanson DJ, Olson JK et al (1990) The American alligator detects food chemicals in aquatic and terrestrial environments. Ethology 85:191–198CrossRefGoogle Scholar
  185. White C (2005) Hunters ring dinner bell for ravens: experimental evidence of a unique foraging strategy. Ecology 86:1057–1060CrossRefGoogle Scholar
  186. Whitehead H, Reeves R (2005) Killer whales and whaling: the scavenging hypothesis. Biol Lett 1:415–418PubMedPubMedCentralCrossRefGoogle Scholar
  187. Wikenros C, Sand H, Ahlqvist P et al (2013) Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS ONE 8(10):e77373PubMedPubMedCentralCrossRefGoogle Scholar
  188. Williams AJ, Dyer BM, Randall RM, Komen J (1990) Killer whales Orcinus orca and seabirds “play” predation and association. Mar Ornithol 18:37–41Google Scholar
  189. Wilmers CC, Stahler DR, Crabtree RL et al (2003a) Resource dispersion and consumer dominance: scavenging at wolf- and hunter- killed carcasses in Greater Yellowstone, USA. Ecol Lett 6:996–1003CrossRefGoogle Scholar
  190. Wilmers CC, Crabtree RL, Smith DW et al (2003b) Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J Anim Ecol 72:909–916CrossRefGoogle Scholar
  191. Wilson R, Smith K (1984) Effect of near-bottom currents on detection of bait by the 4 abyssal grenadier fishes Coryphaenoides spp., recorded in situ with a video 5 camera on a free fall vehicle. Mar Biol 84:83–91CrossRefGoogle Scholar
  192. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135PubMedPubMedCentralCrossRefGoogle Scholar
  193. Worthen WB, Jones MT, Jettojn RM (1998) Community structure and environmental stress: desiccation promotes nestedness in mycophagous fly communities. Oikos 81:45–54CrossRefGoogle Scholar
  194. Wright J, Stone RE, Brown N (2003) Communal roosts as structured information centers in the raven, Corvus corax. J Anim Ecol 72:1003–1014CrossRefGoogle Scholar
  195. Yeh J, Drazen J (2011) Baited-camera observations of deep-sea megafaunal scavenger ecology on the California slope. Mar Ecol Prog Ser 424:145–156CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nuria Selva
    • 1
  • Marcos Moleón
    • 2
    • 3
    • 4
  • Esther Sebastián-González
    • 5
  • Travis L. DeVault
    • 6
  • Maria Martina Quaggiotto
    • 7
  • David M. Bailey
    • 7
  • Sergio A. Lambertucci
    • 8
  • Antoni Margalida
    • 9
    • 10
  1. 1.Institute of Nature Conservation, Polish Academy of SciencesKrakówPoland
  2. 2.Departamento de Biología AplicadaUniversidad Miguel HernándezAlicanteSpain
  3. 3.Departamento de Biología de la ConservaciónEstación Biológica de Doñana (EBD-CSIC)SevillaSpain
  4. 4.Department of ZoologyUniversity of GranadaGranadaSpain
  5. 5.Departamento of Applied BiologyMiguel Hernández UniversityAlicanteSpain
  6. 6.U.S. Department of AgricultureAnimal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field StationSanduskyUSA
  7. 7.Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
  8. 8.ECOTONO Lab, INIBIOMA (CONICET-Comahue National University)BarilocheArgentina
  9. 9.Institute for Game and Wildlife Research IRECCSIC-UCLM-JCCMCiudad RealSpain
  10. 10.Division of Conservation BiologyUniversity of BernBernSwitzerland

Personalised recommendations