Advertisement

Population Genomics and Phylogeography

  • Jente Ottenburghs
  • Philip Lavretsky
  • Jeffrey L. Peters
  • Takeshi Kawakami
  • Robert H. S. Kraus
Chapter

Abstract

Population genetics is the study of genetic variation within populations and how allele frequencies change over space and time. This field largely focuses on the five fundamental evolutionary processes that influence genetic variation: mutation, genetic drift, gene flow, natural selection, and recombination. In this chapter, we review how genomic data from avian species have advanced our understanding of each of these five processes, including an emphasis on their interactions in shaping contemporary genetic diversity on the scale of whole populations. In general, genomic data has increased the potential for fine-scale resolution of population structure and determination of population boundaries and population membership. However, delineating populations is not always straightforward, and populations tend to fall on a continuum from isolation to panmixia. Mutation is the ultimate source of all genetic variation within populations. The ability to sequence whole genomes resulted in better estimates of mutation and substitution rates in particular genomic regions (e.g., coding vs. noncoding DNA) and along different avian lineages. The uncovered variation in these rates will further advance our knowledge of bird evolution. A genomic perspective on other evolutionary forces, such as genetic drift (tightly linked with the concept of effective population size [Ne]), migration, and selection, allows for more detailed reconstructions of demographic and phylogeographic history. In addition, the estimates of genome-wide recombination rates and their relationship with linked selection and GC-biased gene conversion will improve the match between population genetic models and biological reality.

Keywords

Assortative mating Demography Effective population size GC-biased gene conversion Gene flow Linked selection Natural selection RADseq Recombination Substitution rates 

References

  1. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N et al (2013) Hybridization and speciation. J Evol Biol 26(2):229–246CrossRefGoogle Scholar
  2. Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJGoogle Scholar
  3. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. Nature Publishing GroupPubMedPubMedCentralCrossRefGoogle Scholar
  4. Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MAGoogle Scholar
  5. Avise JC, Arnold J, Martin Bal R, Bermingham E, Lamb T, Neigel JE et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18(1):489–522CrossRefGoogle Scholar
  6. Avise JC, Alisauskas RT, Nelson WS, Ankney CD (1992) Matriarchal population genetic structure in an avian species with female natal philopatry. Evolution 46:1084–1096PubMedCrossRefGoogle Scholar
  7. Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E et al (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20:485–495PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ballentine B, Horton B, Brown ET, Greenberg R (2013) Divergent selection on bill morphology contributes to nonrandom mating between swamp sparrow subspecies. Anim Behav 86:467–473. Academic PressCrossRefGoogle Scholar
  9. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839. Nature Publishing GroupPubMedPubMedCentralCrossRefGoogle Scholar
  10. Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503. Nature Publishing GroupPubMedCrossRefGoogle Scholar
  11. Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406. Annual ReviewsCrossRefGoogle Scholar
  12. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326. GeneticsPubMedPubMedCentralCrossRefGoogle Scholar
  13. Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102. Elsevier Current TrendsPubMedCrossRefGoogle Scholar
  14. Black WC IV, Baer CF, Antolin MF, DuTeau NM (2001) Population geomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469PubMedCrossRefGoogle Scholar
  15. Bolívar P, Mugal CF, Rossi M, Nater A, Wang M, Dutoit L et al (2018) Biased inference of selection due to GC-biased gene conversion and the rate of protein evolution in flycatchers when accounting for it. Mol Biol Evol 35:2475–2486. Oxford University PressPubMedPubMedCentralCrossRefGoogle Scholar
  16. Branch CL, Jahner JP, Kozlovsky DY, Parchman TL, Pravosudov VV (2017) Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli). R Soc Open Sci 4:170057. The Royal SocietyPubMedPubMedCentralCrossRefGoogle Scholar
  17. Burri R (2017a) Interpreting differentiation landscapes in the light of long-term linked selection. Evol Lett 1:118–131CrossRefGoogle Scholar
  18. Burri R (2017b) Linked selection, demography and the evolution of correlated genomic landscapes in birds and beyond. Mol Ecol.  https://doi.org/10.1111/mec.14167 PubMedCrossRefGoogle Scholar
  19. Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L et al (2015) Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 25:1656–1665. Cold Spring Harbor Laboratory PressPubMedPubMedCentralCrossRefGoogle Scholar
  20. Bush G (1975) Modes of animal speciation. Annu Rev Ecol Syst 6:339–364CrossRefGoogle Scholar
  21. Calderón L, Campagna L, Wilke T, Lormee H, Eraud C, Dunn JC et al (2016) Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove. BMC Evol Biol 16:237. BioMed CentralPubMedPubMedCentralCrossRefGoogle Scholar
  22. Carling M, Brumfield R (2009) Speciation in Passerina buntings: introgression patterns of sex-linked loci identify a candidate gene region for reproductive isolation. Mol Ecol 18:834–847. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  23. Carling MD, Lovette IJ, Brumfield RT (2010) Historical divergence and gene flow: coalescent analyses of mitochondrial, autosomal and sex-linked loci in passerina buntings. Evolution 64:1762–1772PubMedCrossRefGoogle Scholar
  24. Caro LM, Caycedo-Rosales PC, Bowie RCK, Slabbekoorn H, Cadena CD (2013) Ecological speciation along an elevational gradient in a tropical passerine bird? J Evol Biol 26:357–374PubMedCrossRefGoogle Scholar
  25. Carstens BC, Morales AE, Jackson ND, O’Meara BC (2017) Objective choice of phylogeographic models. Mol Phylogenet Evol 116:136–140. Academic PressPubMedCrossRefGoogle Scholar
  26. Cassin-Sackett L et al (2019) The contribution of genomics to bird conservation. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  27. Chapman JR, Hellgren O, Helin AS, Kraus RHS, Cromie RL, Waldenström J (2016) The evolution of innate immune genes: purifying and balancing selection on β-defensins in waterfowl. Mol Biol Evol 33:3075–3087. Oxford University PressPubMedCrossRefPubMedCentralGoogle Scholar
  28. Charlesworth B (2012) The effects of deleterious mutations on evolution at linked sites. Genetics 190:5–22PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chaves JA, Cooper EA, Hendry AP, Podos J, De León LF, Raeymaekers JAM et al (2016) Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol Ecol 25:5282–5295PubMedCrossRefGoogle Scholar
  30. Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW (2015) Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 15:188. BioMed CentralPubMedPubMedCentralCrossRefGoogle Scholar
  31. Chesser RT, Burns KJ, Cicero C, Dunn JL, Kratter AW, Lovette IJ et al (2017) Fifty-eighth supplement to the American Ornithological Society’s check-list of North American birds. Auk 134:751–773CrossRefGoogle Scholar
  32. Choo KH (1998) Why is the centromere so cold? Genome Res 8:81–82. Cold Spring Harbor Laboratory PressPubMedCrossRefGoogle Scholar
  33. Clutton-Brock T (2007) Sexual selection in males and females. Science 318:1882–1885PubMedCrossRefGoogle Scholar
  34. Comeron JM (2017) Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philos Trans R Soc Lond Ser B Biol Sci 372:20160471. The Royal SocietyCrossRefGoogle Scholar
  35. Coyne J, Orr H (2004) Speciation. Sinauer Associates, Sunderland, MAGoogle Scholar
  36. Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 23:3133–3157PubMedCrossRefGoogle Scholar
  37. Dai C, Chen K, Zhang R, Yang X, Yin Z, Tian H et al (2010) Molecular phylogenetic analysis among species of paridae, remizidae and aegithalos based on mtDNA sequences of COI and cyt b. Chinese Birds 1:112–123CrossRefGoogle Scholar
  38. Damas J et al (2019) Avian chromosomal evolution. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  39. Darwin C (1859) On the origin of species by means of natural selection. Murray, LondonGoogle Scholar
  40. Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340. Elsevier Current TrendsPubMedPubMedCentralCrossRefGoogle Scholar
  41. Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F et al (2015) Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol Ecol 24:1873–1888. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  42. Dickerson G (1973) Inbreeding and heterosis in animals. J Anim Sci 1973:54–77CrossRefGoogle Scholar
  43. Dobzhansky T (1940) Speciation as a stage in evolutionary divergence. Am Nat 74:312–321. Science PressCrossRefGoogle Scholar
  44. Drake J, Charlesworth B, Charlesworth D, Crow J (1998) Rates of spontaneous mutation. Genetics 148:1667–1686PubMedPubMedCentralGoogle Scholar
  45. Duret L, Galtier N (2009) biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311. Annual ReviewsPubMedCrossRefGoogle Scholar
  46. Dutoit L, Vijay N, Mugal CF, Bossu CM, Burri R, Wolf J et al (2017) Covariation in levels of nucleotide diversity in homologous regions of the avian genome long after completion of lineage sorting. Proc R Soc B Biol Sci 284:20162756CrossRefGoogle Scholar
  47. Edwards SV, Shultz AJ, Campbell-Staton SC (2015) Next-generation sequencing and the expanding domain of phylogeography. Folia Zool 64:187–206. Institute of Vertebrate Biology, Academy of Sciences of the Czech RepublicCrossRefGoogle Scholar
  48. Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C (2016) Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proc Natl Acad Sci USA 113:8025–8032PubMedCrossRefGoogle Scholar
  49. Ellegren H (2009) A selection model of molecular evolution incorporating the effective population size. Evolution 63:301–305PubMedCrossRefGoogle Scholar
  50. Elsbeth McPhee M (2004) Generations in captivity increases behavioral variance: considerations for captive breeding and reintroduction programs. Biol Conserv 115:71–77. ElsevierCrossRefGoogle Scholar
  51. Feng X-J, Jiang G-F, Fan Z (2015) Identification of outliers in a genomic scan for selection along environmental gradients in the bamboo locust, Ceracris kiangsu. Sci Rep 5:13758. Nature Publishing GroupPubMedPubMedCentralCrossRefGoogle Scholar
  52. Fernandes A, Cohn-Haft M, Hrbek T, Farias I (2014) Rivers acting as barriers for bird dispersal in the Amazon. Rev Bras Ornitol 22:363–373Google Scholar
  53. Fischer R (1930) The genetical theory of natural selection. Oxford University Press, OxfordCrossRefGoogle Scholar
  54. Fledel-Alon A, Wilson DJ, Broman K, Wen X, Ober C, Coop G et al (2009) Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet 5:e1000658. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  55. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. GeneticsPubMedPubMedCentralCrossRefGoogle Scholar
  56. Frank SA (1991) Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution 45:262–267PubMedGoogle Scholar
  57. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95CrossRefGoogle Scholar
  58. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  59. Frankham R (2012) How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity (Edinb) 108:167–178CrossRefGoogle Scholar
  60. Fraser DJ (2008) How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol Appl 1:535–586PubMedPubMedCentralCrossRefGoogle Scholar
  61. Friis G, Aleixandre P, Rodríguez-Estrella R, Navarro-Sigüenza AG, Milá B (2016) Rapid postglacial diversification and long-term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence. Mol Ecol 25:6175–6195PubMedCrossRefGoogle Scholar
  62. Garg KM, Chattopadhyay B, Wilton PR, Malia Prawiradilaga D, Rheindt FE (2018) Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea. Mol Phylogenet Evol 125:196–203PubMedCrossRefGoogle Scholar
  63. Gillespie J (2001) Is the population size of a species relevant to its evolution? Evolution 55:2161–2169PubMedCrossRefGoogle Scholar
  64. Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS (2015) Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 24:5852–5863. Wiley/Blackwell (10.1111)PubMedPubMedCentralCrossRefGoogle Scholar
  65. Grant P, Grant B (1997) Genetics and the origin of bird species. Proc Natl Acad Sci USA 94:7768–7775PubMedCrossRefGoogle Scholar
  66. Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens H-J, Crooijmans RPMA et al (2009) A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res 19:510–519. Cold Spring Harbor Laboratory PressPubMedPubMedCentralCrossRefGoogle Scholar
  67. Hahn M (2008) Toward a selection theory of molecular evolution. Evolution 62:255–265PubMedCrossRefGoogle Scholar
  68. Haldane J (1948) The theory of a cline. J Genet 48:277–284PubMedCrossRefGoogle Scholar
  69. Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  70. Harvey MG, Brumfield RT (2015) Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Mol Phylogenet Evol 83:305–316. Academic PressPubMedCrossRefGoogle Scholar
  71. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618PubMedCrossRefGoogle Scholar
  72. Hey J (2006) Recent advances in assessing gene flow between diverging populations and species. Curr Opin Genet Dev 16:592–596PubMedCrossRefGoogle Scholar
  73. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hey J, Chung Y, Sethuraman A, Lachance J, Tishkoff S, Sousa VC et al (2018) Phylogeny estimation by integration over isolation with migration models. Mol Biol Evol 35(11):2805–2818.  https://doi.org/10.1093/molbev/msy162 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hughes JB, Daily GC, Ehrlich PR (1997) Population diversity: its extent and extinction. Science 278:689–692PubMedCrossRefGoogle Scholar
  76. Irwin D, Irwin J, Smith T (2011) Genetic variation and seasonal migratory connectivity in Wilson’s warblers (Wilsonia pusilla): species-level differences in nuclear DNA between western and eastern populations. Mol Ecol 20:3102–3115. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  77. Jax E, Franchini P, Sekar V, Ottenburghs J, Monne D, Kellenberger R, et al (2018a) Population genetics and evolution patterns of innate immune genes in waterfowl. In: Jax E (ed) Immunology going wild: genetic variation and immunocompetence in the mallard (Anas platyrhynchos), PhD thesis, Faculty of Biology, Konstanz UniversityGoogle Scholar
  78. Jax E, Wink M, Kraus RHS (2018b) Avian transcriptomics: opportunities and challenges. J Ornithol 159:599–629. Springer Berlin HeidelbergCrossRefGoogle Scholar
  79. Johnsgard P (1994) Arena birds: sexual selection and behavior. Smithsonian Institution Press, Washington, DCGoogle Scholar
  80. Jonker RM, Kraus RHS, Zhang Q, van Hooft P, Larsson K, van der Jeugd HP et al (2013) Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Mol Ecol 22:5835–5847PubMedCrossRefGoogle Scholar
  81. Kawakami T, Smeds L, Backström N, Husby A, Qvarnström A, Mugal CF et al (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23:4035–4058. Wiley/Blackwell (10.1111)PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kawakami T, Mugal CF, Suh A, Nater A, Burri R, Smeds L et al (2017) Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds. Mol Ecol 26:4158–4172PubMedCrossRefGoogle Scholar
  83. Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A et al (2013) Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol 22:2848–2863. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  84. Kimura M, Clegg SM, Lovette IJ, Holder KR, Girman DJ, Mila B et al (2002) Phylogeographical approaches to assessing demographic connectivity between breeding and overwintering regions in a Nearctic-Neotropical warbler (Wilsonia pusilla). Mol Ecol 11:1605–1616. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  85. Kingman JFC (1982a) On the genealogy of large populations. J Appl Probab 19:27–43CrossRefGoogle Scholar
  86. Kingman JFC (1982b) The coalescent. Stoch Process Their Appl 13:235–248. North-HollandCrossRefGoogle Scholar
  87. Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME et al (2018) Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am Nat 191:1–20PubMedCrossRefGoogle Scholar
  88. Kopuchian C, Campagna L, Di Giacomo AS, Wilson RE, Bulgarella M, Petracci P et al (2016) Demographic history inferred from genome-wide data reveals two lineages of sheldgeese endemic to a glacial refugium in the southern Atlantic. J Biogeogr 43:1979–1989. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  89. Kozma R, Lillie M, Benito BM, Svenning J-C, Höglund J (2018) Past and potential future population dynamics of three grouse species using ecological and whole genome coalescent modeling. Ecol Evol 8(13):6671–6681.  https://doi.org/10.1002/ece3.4163. Wiley-BlackwellCrossRefPubMedPubMedCentralGoogle Scholar
  90. Krakauer A (2008) Sexual selection and the genetic mating system of wild turkeys. Condor 110:1–12CrossRefGoogle Scholar
  91. Kraus RHS, Wink M (2015) Avian genomics: fledging into the wild! J Ornithol 156:851–865. Springer Berlin HeidelbergCrossRefGoogle Scholar
  92. Kraus R, Kerstens H, van Hooft P, Megens H, Elmberg J, Tsvey A et al (2012) Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evol Biol 12:45PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kraus RHS, van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC et al (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  94. Kraus RHS, vonHoldt B, Cocchiararo B, Harms V, Bayerl H, Kühn R et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  95. Künstner A, Wolf J, Backström N, Whitney O, Balakrishnan C, Day L et al (2010) Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 19(Suppl 1):266–276PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lacy R (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158CrossRefGoogle Scholar
  97. Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305PubMedCrossRefGoogle Scholar
  98. Langin KM, Sillett TS, Funk WC, Morrison SA, Desrosiers MA, Ghalambor CK (2015) Islands within an island: repeated adaptive divergence in a single population. Evolution 69:653–665PubMedCrossRefGoogle Scholar
  99. Lavretsky P, Dacosta J, Hernandez-Banos B, Engilis A, Sorenson M, Peters J (2015) Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards. Mol Ecol 24:5364–5378PubMedCrossRefGoogle Scholar
  100. Lavretsky P, DaCosta J, Sorenson M, McCracken K, Peters J (2019) ddRAD-seq data reveal significant genome-wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Mol Ecol. (in press)Google Scholar
  101. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. Oxford University PressPubMedPubMedCentralCrossRefGoogle Scholar
  102. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994. Nature Publishing GroupPubMedCrossRefGoogle Scholar
  103. Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104:8597–8604PubMedCrossRefGoogle Scholar
  104. Machado AP, Clément L, Uva V, Goudet J, Roulin A (2018) The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J Biogeogr 45:1288–1300CrossRefGoogle Scholar
  105. Maldonado-Coelho M, Blake JG, Silveira LF, Batalha-Filho H, Ricklefs RE (2013) Rivers, refuges and population divergence of fire-eye antbirds (Pyriglena) in the Amazon Basin. J Evol Biol 26:1090–1107PubMedCrossRefGoogle Scholar
  106. Manthey JD, Robbins MB, Moyle RG (2016) A genomic investigation of the putative contact zone between divergent Brown Creeper (Certhia americana) lineages: chromosomal patterns of genetic differentiation. Genome 59:115–125PubMedCrossRefGoogle Scholar
  107. Marko PB, Hart MW (2011) The complex analytical landscape of gene flow inference. Trends Ecol Evol 26:448–456. Elsevier Current TrendsPubMedCrossRefGoogle Scholar
  108. Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F et al (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 23:1817–1828. Cold Spring Harbor Laboratory PressPubMedPubMedCentralCrossRefGoogle Scholar
  109. McCracken KG, Barger CP, Bulgarella M, Johnson KP, Kuhner MK, Moore AV et al (2009) Signatures of high-altitude adaptation in the major hemoglobin of five species of andean dabbling ducks. Am Nat 174:631–650. The University of Chicago PressPubMedCrossRefGoogle Scholar
  110. McVicker G, Gordon D, Davis C, Green P (2009) Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet 5:e1000471. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  111. Minvielle F, Ito S, Inoue-Murayama M, Mizutani M, Wakasugi N (2000) Brief communication. Genetic analyses of plumage color mutations on the Z chromosome of Japanese quail. J Hered 91:499–501. Oxford University PressPubMedCrossRefGoogle Scholar
  112. Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Conserv Genet 5:631–645. Kluwer Academic PublishersCrossRefGoogle Scholar
  113. Moore WS, Graham JH, Price JT (1991) Mitochondrial DNA variation in the Northern Flicker (Colaptes auratus, Aves). Mol Biol Evol 8:327–344Google Scholar
  114. Moyle RG, Manthey JD, Hosner PA, Rahman M, Lakim M, Sheldon FH (2017) A genome-wide assessment of stages of elevational parapatry in Bornean passerine birds reveals no introgression: implications for processes and patterns of speciation. PeerJ 5:e3335PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition. BioEssays 37:1317–1326. Wiley-BlackwellPubMedCrossRefGoogle Scholar
  116. Munro KJ, Burg TM (2017) A review of historical and contemporary processes affecting population genetic structure of Southern Ocean seabirds. Emu 117:4–18Google Scholar
  117. Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H (2013) Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 9:e1003942PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380. Cell PressPubMedPubMedCentralCrossRefGoogle Scholar
  119. Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H (2016) PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol 25:1058–1072PubMedPubMedCentralCrossRefGoogle Scholar
  120. Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JB, Backström N et al (2010) Molecular evolution of genes in avian genomes. Genome Biol 11:R68. BioMed CentralPubMedPubMedCentralCrossRefGoogle Scholar
  121. Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ et al (2015) Convergent evolution of hemoglobin function in high-altitude andean waterfowl involves limited parallelism at the molecular sequence level. PLoS Genet 11(12):e1005681PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nosil P, Funk D, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402PubMedCrossRefGoogle Scholar
  123. Ohta T (1972) Population size and rate of evolution. J Mol Evol 1:305–314. Springer-VerlagPubMedCrossRefGoogle Scholar
  124. Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–269CrossRefGoogle Scholar
  125. Orr A (2001) The genetics of species differences. Trends Ecol Evol 16:343–350. Elsevier Current TrendsCrossRefGoogle Scholar
  126. Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506. Elsevier Current TrendsPubMedCrossRefGoogle Scholar
  127. Oswald JA, Harvey MG, Remsen RC, Foxworth DU, Cardiff SW, Dittmann DL et al (2016) Willet be one species or two? A genomic view of the evolutionary history of Tringa semipalmata. Auk 133:593–614CrossRefGoogle Scholar
  128. Oswald JA, Overcast I, Mauck WM, Andersen MJ, Smith BT (2017) Isolation with asymmetric gene flow during the nonsynchronous divergence of dry forest birds. Mol Ecol 26:1386–1400. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  129. Ottenburghs J (2019) Avian species concepts in the light of genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  130. Ottenburghs J, Kraus R, van Hooft P, van Wieren S, Ydenberg R, Prins H (2017a) Avian introgression in the genomic era. Avian Res 8:30CrossRefGoogle Scholar
  131. Ottenburghs J, Megens H-J, Kraus R, Van Hooft P, Van Wieren S, Crooijmans R et al (2017b) A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol Biol 17:201PubMedPubMedCentralCrossRefGoogle Scholar
  132. Oyler-McCance SJ, Kahn NW, Burnham KP, Braun CE, Quinn TW (1999) A population genetic comparison of large- and small-bodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers. Mol Ecol 8:1457–1465. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  133. Padró J, Lambertucci SA, Perrig PL, Pauli JN (2018) Evidence of genetic structure in a wide-ranging and highly mobile soaring scavenger, the Andean condor. Divers Distrib.  https://doi.org/10.1111/ddi.12786 CrossRefGoogle Scholar
  134. Parchman T, Benkman C, Britch S (2006) Patterns of genetic variation in the adaptive radiation of New World crossbills (Aves: Loxia). Mol Ecol 15:1873–1887PubMedCrossRefGoogle Scholar
  135. Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB, Uy JAC et al (2013) The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol Ecol 22:3304–3317. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  136. Parchman TL, Buerkle CA, Soria-Carrasco V, Benkman CW (2016) Genome divergence and diversification within a geographic mosaic of coevolution. Mol Ecol 25:5705–5718. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  137. Paxton KL, Yau M, Moore FR, Irwin DE (2013) Differential migratory timing of western populations of Wilson’s Warbler (Cardellina pusilla) revealed by mitochondrial DNA and stable isotopes. Auk 130:689–698CrossRefGoogle Scholar
  138. Payseur B (2010) Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol Ecol Resour 10:806–820PubMedCrossRefGoogle Scholar
  139. Pease JB, Hahn MW (2013) More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution 67:2376–2384PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pérez-Figueroa A, García-Pereira M, Saura M, Rolán-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276PubMedCrossRefGoogle Scholar
  141. Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD (2016) Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv.  https://doi.org/10.1016/j.biocon.2016.10.003 CrossRefGoogle Scholar
  142. Phadnis N, Orr H (2009) A single gene causes both male sterility and segregation distortion in drosophila hybrids. Science 323:376–379PubMedCrossRefGoogle Scholar
  143. Poelstra J, Vijay N, Bossu C, Lantz H, Ryll B, Muller I et al (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–1414CrossRefGoogle Scholar
  144. Pouyet F, Aeschbacher S, Thiéry A, Excoffier L (2018) Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences. elife 7:e36317PubMedPubMedCentralCrossRefGoogle Scholar
  145. Price T (1998) Sexual selection and natural selection in bird speciation. Philos Trans R Soc Lond B Biol Sci 353:251–260PubMedCentralCrossRefPubMedGoogle Scholar
  146. Promislow D, Montgomerie R, Martin TE (1994) Sexual selection and survival in North American waterfowl. Evolution 48:2045–2050PubMedCrossRefGoogle Scholar
  147. Pryke SR (2010) Sex chromosome linkage of mate preference and color signal maintains assortative mating between interbreeding finch morphs. Evolution 64:1301–1310. Wiley/Blackwell (10.1111)PubMedGoogle Scholar
  148. Quinn T (1992) The genetic legacy of Mother Goose – phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol Ecol 1:105–117PubMedCrossRefGoogle Scholar
  149. Raposo do Amaral F, Albers PK, Edwards SV, Miyaki CY (2013) Multilocus tests of Pleistocene refugia and ancient divergence in a pair of Atlantic Forest antbirds (Myrmeciza). Mol Ecol 22:3996–4013PubMedCrossRefGoogle Scholar
  150. Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SYW et al (2017) Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. Infect Genet Evol 53:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  151. Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M et al (2017) Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 30:1450–1477PubMedCrossRefGoogle Scholar
  152. Reeve HK, Pfennig DW (2003) Genetic biases for showy males: are some genetic systems especially conducive to sexual selection? PNAS 100:1089–1094PubMedCrossRefGoogle Scholar
  153. Ritchie MG (2007) Sexual selection and speciation. Annu Rev Ecol Evol Syst 38:79–102CrossRefGoogle Scholar
  154. Ruegg KC, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB et al (2014) Mapping migration in a songbird using high-resolution genetic markers. Mol Ecol 23:5726–5739. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  155. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  156. Sabeti P, Schaffner S, Fry B, Lohmueller J, Varily P, Shamovksy O et al (2006) Positive natural selection in the human lineage. Science 312:1614–1620PubMedCrossRefGoogle Scholar
  157. Saether SA, Saetre G-P, Borge T, Wiley C, Svedin N, Andersson G et al (2007) Sex chromosome-linked species recognition and evolution of reproductive isolation in flycatchers. Science 318:95–97PubMedCrossRefGoogle Scholar
  158. Samuk K, Owens GL, Delmore KE, Miller SE, Rennison DJ, Schluter D (2017) Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol Ecol 26:4378–4390PubMedCrossRefGoogle Scholar
  159. Sandoval-H J, Gómez JP, Cadena CD (2017) Is the largest river valley west of the Andes a driver of diversification in Neotropical lowland birds? Auk 134:168–180CrossRefGoogle Scholar
  160. Scally A (2016) The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 41:36–43. Elsevier Current TrendsPubMedCrossRefGoogle Scholar
  161. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43. Annual ReviewsCrossRefGoogle Scholar
  162. Schrider DR, Kern AD (2016) S/HIC: robust identification of soft and hard sweeps using machine learning. PLoS Genet 12:e1005928. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  163. Schrider DR, Kern AD (2018) Supervised machine learning for population genetics: a new paradigm. Trends Genet 34:301–312. ElsevierPubMedPubMedCentralCrossRefGoogle Scholar
  164. Schrider DR, Shanku AG, Kern AD (2016) Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:1207–1223. Genetics Society of AmericaPubMedPubMedCentralCrossRefGoogle Scholar
  165. Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA et al (2014) Genomics and the origin of species. Nat Rev Genet 15:176–192PubMedPubMedCentralCrossRefGoogle Scholar
  166. Semenov GA, Scordato ESC, Khaydarov DR, Smith CCR, Kane NC, Safran RJ (2017) Effects of assortative mate choice on the genomic and morphological structure of a hybrid zone between two bird subspecies. Mol Ecol 26:6430–6444PubMedCrossRefGoogle Scholar
  167. Servedio MR, Boughman JW (2017) The role of sexual selection in local adaptation and speciation. Annu Rev Ecol Evol Syst 48:85–109CrossRefGoogle Scholar
  168. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: “magic” but not rare? Trends Ecol Evol 26:389–397CrossRefGoogle Scholar
  169. Sheehan S, Song YS (2016) Deep learning for population genetic inference. PLoS Comput Biol 12:e1004845. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  170. Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM et al (2015) Stable recombination hotspots in birds. Science 350:928–932PubMedPubMedCentralCrossRefGoogle Scholar
  171. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368PubMedCrossRefGoogle Scholar
  172. Smeds L, Kawakami T, Burri R, Bolivar P, Husby A, Qvarnström A et al (2014) Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat Commun 5:5448. Nature Publishing GroupPubMedPubMedCentralCrossRefGoogle Scholar
  173. Smyth JF, Patten MA, Pruett CL (2015) The evolutionary ecology of a species ring: a test of alternative models. Folia Zool 64:233–244CrossRefGoogle Scholar
  174. Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64:295–315PubMedCrossRefGoogle Scholar
  175. Soulé M (1976) Allozyme variation, its determinants in space and time. In: Ayala F (ed) Molecular evolution. Sinauer Associates, Sunderland, MA, pp 66–77Google Scholar
  176. Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM (2017) Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond Ser B Biol Sci 372:20160455. The Royal SocietyCrossRefGoogle Scholar
  177. Stölting KN, Nipper R, Lindtke D, Caseys C, Waeber S, Castiglione S et al (2013) Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species. Mol Ecol 22:842–855. Wiley/Blackwell (10.1111)PubMedCrossRefGoogle Scholar
  178. Sutter A, Beysard M, Heckel G (2013) Sex-specific clines support incipient speciation in a common European mammal. Heredity (Edinb) 110:398–404. Nature Publishing GroupCrossRefGoogle Scholar
  179. Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  180. Templeton A (1986) Coadaptation and outbreeding depression. Sinauer Associates, Sunderland, MAGoogle Scholar
  181. Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164PubMedCrossRefGoogle Scholar
  182. Tucker PK, Sage RD, Warner J, Wilson AC, Eicher EM (1992) Abrupt cline for sex chromosomes in a hybrid zone between two species of mice. Evolution 46:1146–1163PubMedCrossRefGoogle Scholar
  183. Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s corollary to haldane’s rule. Genetics 176:1059–1088PubMedPubMedCentralCrossRefGoogle Scholar
  184. Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343PubMedCrossRefGoogle Scholar
  185. Uy JAC, Irwin DE, Webster MS (2018) Behavioral isolation and incipient speciation in birds. Annu Rev Ecol Evol Syst 49:1–24CrossRefGoogle Scholar
  186. Van Belleghem SM, Baquero M, Papa R, Salazar C, McMillan WO, Counterman BA et al (2018) Patterns of Z chromosome divergence among Heliconius species highlight the importance of historical demography. Mol Ecol 27(19):3852–3872.  https://doi.org/10.1111/mec.14560. Wiley/Blackwell (10.1111)CrossRefPubMedPubMedCentralGoogle Scholar
  187. van Oers K, Santure AW, De Cauwer I, van Bers NE, Crooijmans RP, Sheldon BC et al (2014) Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity (Edinb) 112:307–316. Nature Publishing GroupCrossRefGoogle Scholar
  188. Velová H, Gutowska-Ding MW, Burt DW, Vinkler M, Yeager M (2018) Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol Biol Evol 35:2170–2184. Oxford University PressPubMedCentralCrossRefPubMedGoogle Scholar
  189. Verhulst S, Van Eck HM (1996) Gene flow and immigration rate in an island population of great tits. J Evol Biol 9:771–782CrossRefGoogle Scholar
  190. Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci USA 106:9939–9946PubMedCrossRefGoogle Scholar
  191. Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW (2017) Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol Ecol 26:4284–4295PubMedCrossRefGoogle Scholar
  192. Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–412. Cell PressPubMedPubMedCentralCrossRefGoogle Scholar
  193. Waples R, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439PubMedCrossRefGoogle Scholar
  194. Weir JT, Faccio MS, Pulido-Santacruz P, Barrera-Guzmán AO, Aleixo A (2015) Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution 69:1823–1834PubMedCrossRefGoogle Scholar
  195. Whitlock M, McCauley D (1999) Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity (Edinb) 82:117–125CrossRefGoogle Scholar
  196. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  197. Wink M (2019) A historical perspective of avian genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  198. Wolf JBW, Ellegren H (2017) Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet 18:87–100PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wolf JBW, Lindell J, Backström N (2010) Speciation genetics: current status and evolving approaches. Philos Trans R Soc Lond Ser B Biol Sci 365:1717–1733CrossRefGoogle Scholar
  200. Wray GA (2013) Genomics and the evolution of phenotypic traits. Annu Rev Ecol Evol Syst 44:51–72. Annual ReviewsCrossRefGoogle Scholar
  201. Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159PubMedPubMedCentralGoogle Scholar
  202. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431Google Scholar
  203. Wu C-I (2001) The genic view of the process of speciation. J Evol Biol 14:851–865. Wiley/Blackwell (10.1111)CrossRefGoogle Scholar
  204. Wu C-I, Ting C-T (2004) Genes and speciation. Nat Rev Genet 5:114–122. Nature Publishing GroupPubMedPubMedCentralCrossRefGoogle Scholar
  205. Yeung CKL, Tsai P-W, Chesser RT, Lin R-C, Yao C-T, Tian X-H et al (2011) Testing founder effect speciation: divergence population genetics of the spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves). Mol Biol Evol 28:473–482PubMedCrossRefGoogle Scholar
  206. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhen Y, Harrigan RJ, Ruegg KC, Anderson EC, Ng TC, Lao S et al (2017) Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens). Mol Ecol 26:4966–4977PubMedPubMedCentralCrossRefGoogle Scholar
  208. Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L (2018) Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLoS Comput Biol 14:e1005932. Public Library of SciencePubMedPubMedCentralCrossRefGoogle Scholar
  209. Zink RM, Rootes WL, Dittmann DL (1991) Mitochondrial DNA variation, population structure, and evolution of the common grackle (Quiscalus quiscula). Condor 93:318–329. American Ornithological SocietyCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jente Ottenburghs
    • 1
  • Philip Lavretsky
    • 2
  • Jeffrey L. Peters
    • 3
  • Takeshi Kawakami
    • 1
  • Robert H. S. Kraus
    • 4
    • 5
  1. 1.Department of Evolutionary BiologyUppsala UniversityUppsalaSweden
  2. 2.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  3. 3.Department of Biological SciencesWright State UniversityDaytonUSA
  4. 4.Department of Migration and Immuno-EcologyMax Planck Institute for OrnithologyRadolfzellGermany
  5. 5.Department of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations