Advertisement

The Contribution of Genomics to Bird Conservation

  • Loren Cassin-Sackett
  • Andreanna J. Welch
  • Madhvi X. Venkatraman
  • Taylor E. Callicrate
  • Robert C. FleischerEmail author
Chapter

Abstract

The world’s birds are in trouble, and scientific research, including genetic and genomic methods, can play an important role in understanding and mitigating these problems. In this review, we summarize several ways that the concepts and methods of genomics can help with bird conservation and how the dramatically increasing power and decreasing costs of these methods may allow an even greater role in the future. We assess six primary, not exhaustive, and not mutually exclusive research areas, including avian forensics, captive management, infectious disease and vector interactions, metagenomic and microbiome applications, systematics and the definition of conservation units, and the genomics of adaptation. We conclude that the uses of genomics to identify, understand, and in some cases reduce anthropogenic impacts on bird populations are well underway. And the future holds great promise that developments in our understanding of avian genomes and tools to modify them will play an increasingly important role in future attempts to alleviate these impacts.

Keywords

Conservation Genomics Birds Wildlife forensics Infectious disease Population management Evolutionarily significant units Metabarcoding Adaptation Climate change 

Notes

Acknowledgments

We thank three anonymous reviewers for their insightful comments on the manuscript and Carly Muletz-Wolz for providing Fig. 1d.

References

  1. Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A (2017) Forensic genetics and genomics: much more than just a human affair. PLoS Genet 13(9):e1006960PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7CrossRefGoogle Scholar
  3. Baldassare DT, White TA, Karubian J, Webster MS (2014) Genomic and morphological analysis of a semipermeable avian hybrid zone suggests asymmetrical introgression of a sexual signal. Evolution 68:2644–2657CrossRefGoogle Scholar
  4. Ballou JD, Lacy RD (1995) Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou JD, Foose TJ, Gilpin M (eds) Population management for survival and recovery. Columbia University Press, New York, pp 76–111Google Scholar
  5. Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, Bensch T, Graves GR, Jhala YV, Peirce MA, Rahmani AR, Fonseca DM, Fleischer RC (2006) Global phylogeographic limits of Hawaii’s avian malaria. Proc R Soc B 273:2935–2944PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beadell JS, Covas R, Gebhard C, Ishtiaq F, Melo M, Schmidt BK, Perkins SL, Graves GR, Fleischer RC (2009) Host associations and evolutionary relationships of avian blood parasites from West Africa. Int J Parasitol 39:257–266.  https://doi.org/10.1016/j.ijpara.2008.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellemain E, Bermingham E, Ricklefs RE (2008) The dynamic evolutionary history of the bananaquit (Coereba flaveola) in the Caribbean revealed by a multigene analysis. BMC Evol Biol 8:1–14.  https://doi.org/10.1186/1471-2148-8-240 CrossRefGoogle Scholar
  8. Bergner LM, Jamieson IG, Robertson BC (2014) Combining genetic data to identify relatedness among founders in a genetically depauperate parrot, the kakapo (Strigops habroptilus). Conserv Genet 15:1013–1020CrossRefGoogle Scholar
  9. Berry D, Mahfoudh KB, Wagner M, A. Loy. 2011. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 77:7846-7849.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bielikova, M., A. Ficek, D. Valkova, , J. Turna 2010. Multiplex PCR amplification of 13 microsatellite loci for Aquila chrysaetos in forensic applications. Biologia 65: 1081.CrossRefGoogle Scholar
  11. BirdLife International (2018) State of the world’s birds: taking the pulse of the planet. BirdLife International, Cambridge. https://www.birdlife.org/sowb2018 Google Scholar
  12. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367PubMedCrossRefPubMedCentralGoogle Scholar
  13. Borner J, Burmester T (2017) Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics 18(1):100PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brault AC, Huang CY-H, Langevin SA, Kinney RM, Bowen RA, Ramey WN, Panella NA, Holmes EC, Powers AM, Miller BR (2007) A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39:1162–1166.  https://doi.org/10.1038/ng2097 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cassin-Sackett L, Callicrate TE, Fleischer RC (2018) Parallel evolution of gene classes, but not genes: evidence from Hawai’ian honeycreeper populations exposed to avian malaria. Mol Ecol 28(3):568–583PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chapman JR, Hellgren O, Helin AS, Kraus RH, Cromie RL, Waldenström J (2016) The evolution of innate immune genes: purifying and balancing selection on β-defensins in waterfowl. Mol Biol Evol 33(12):3075–3087PubMedCrossRefPubMedCentralGoogle Scholar
  17. Charmantier A, Gienapp P (2013) Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol Appl 7:15–28PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen I, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species of climate warming. Science 333:1024–1026PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW (2015) Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 15(1):188PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cheviron ZA, Whitehead A, Brumfield RT (2008) Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol Ecol 17:4556–4569PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46PubMedCrossRefPubMedCentralGoogle Scholar
  22. Coetzer WG, Downs CT, Perrin MR, Willows-Munro S (2017) Testing of microsatellite multiplexes for individual identification of cape parrots (Poicephalus robustus): paternity testing and monitoring trade. PeerJ 5:e2900.  https://doi.org/10.7717/peerj.2900 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Connell S, Meade KG, Allan B, Lloyd AT, Kenny E, Cormican P, Morris DW, Bradley DG, O’Farrelly C (2012) Avian resistance to campylobacter jejuni colonization is associated with an intestinal immunogene expression signature identified by mRNA sequencing. PLoS One 7:e40409.  https://doi.org/10.1371/journal.pone.0040409 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cooper CA, Challagulla A, Jenkins KA, Wise TG, O’Neil TE, Morris KR, Tizard ML, Doran TJ (2017) Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Res 26(3):331–347PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cooper CA, Doran TJ, Challagulla A, Tizard ML, Jenkins KA (2018) Innovative approaches to genome editing in avian species. J Anim Sci Biotechnol 9(1):15PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cornet S, Nicot A, Rivero A, Gandon S (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16:323–329.  https://doi.org/10.1111/ele.12041 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dawnay N, Ogden R, Wetton JH, Thorpe RS, McEwing R (2009) Genetic data from 28 STR loci for forensic individual identification and parentage analyses in 6 bird of prey species. Forensic Sci Int Genet 3:e63–e69PubMedCrossRefPubMedCentralGoogle Scholar
  29. Day JM, Ballard LL, Duke MV, Scheffler BE, Zsak L (2010) Metagenomic analysis of the Turkey gut RNA virus community. Virol J 7:313PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deagle BE, Jarman SN, Coissac E, Pampanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker not a perfect match. Biol Lett 10:20140562PubMedPubMedCentralCrossRefGoogle Scholar
  31. Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarmon SN (2013) Quantifying sequence proportions in a DNA-based diet study using ion torrent amplicon sequencing: which counts count? Mol Ecol Resour 13:620–633PubMedCrossRefPubMedCentralGoogle Scholar
  32. DeBiasse MB, Kelly MW (2016) Plastic and evolved responses to global change: what can we learn from comparative transcriptomics? J Hered 107:71–81PubMedCrossRefPubMedCentralGoogle Scholar
  33. DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dierickx EG, Shultz AJ, Sato F, Hiraoka T, Edwards SV (2015) Morphological and genomic comparisons of Hawaiian and Japanese black-footed albatrosses (Phoebastria nigripes) using double digest RADseq: implications for conservation. Evol Appl 8:662–678.  https://doi.org/10.1111/eva.12274 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dove CJ, Rotzel NC, Heacker M, Weigt LA (2008) Using DNA barcodes to identify bird species involved in bird strikes. J Wildl Manag 72:1231–1236CrossRefGoogle Scholar
  36. Dove CJ, Dahlan NF, Heacker M (2009) Forensic bird-strike identification techniques used in an accident investigation at Wiley Post Airport, Oklahoma, 2008. Human–Wildlife Interactions. Paper 7. http://digitalcommons.unl.edu/hwi
  37. Duron O, Cremaschi J, Mccoy KD (2016) The high diversity and global distribution of the intracellular bacterium Rickettsiella in the polar seabird tick Ixodes uriae. Microb Ecol 71:761–770.  https://doi.org/10.1007/s00248-015-0702-8 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Elbrecht V, Leese F (2015) Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS One 10:e0130324PubMedPubMedCentralCrossRefGoogle Scholar
  39. Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM (2016) Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol Ecol Resour 16:29–41PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fan W, Wang Y, Wang S, Cheng Z, Guo H, Zhao X, Liu J (2017) Virulence in Newcastle disease virus: a genotyping and molecular evolution spectrum perspective. Res Vet Sci 111:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomics analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fleischer RC (1998) Genetics and avian conservation. In: Marzluff J, Sallabanks R (eds) Avian conservation: research and management. Island Press, Washington, DC, pp 29–47Google Scholar
  43. Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B Biol Sci 365:547–556CrossRefGoogle Scholar
  44. Gerwing TG, Kim JH, Hamilton DJ, Barbeau MA, Addison JA (2016) Diet reconstruction using next-generation sequencing increases the known ecosystem usage by a shorebird. Auk 133:168–177CrossRefGoogle Scholar
  45. Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–375PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gill FB (1997) Local cytonuclear extinction of the Golden-winged warbler. Evolution 51:519–525PubMedCrossRefPubMedCentralGoogle Scholar
  48. Godoz-Vitorino F, Goldfarb KC, Karaoz U, Leal S, Garcia-Amado MA, Hugenholz P, Tringe SG, Brodie EL, Dominguez-Bello MG (2012) Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6(3):531–541CrossRefGoogle Scholar
  49. Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS (2015) Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 24(23):5852–5863PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grueber CE, Sutton JT, Heber S, Briskie JV, Jamieson IG, Robertson BC (2017) Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Mol Ecol 26(10):2660–2673.  https://doi.org/10.1111/mec.14063 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol Ecol 22:4470–4482.  https://doi.org/10.1111/mec.12404 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Haig SM, Beever EA, Chambers SM, Draheim HM, Dugger BD, Dunham S, Elliott-Smith E et al (2006) Taxonomic considerations in listing subspecies under the U.S. endangered species act. Conserv Biol 20:1584–1594PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34(1):78PubMedCrossRefPubMedCentralGoogle Scholar
  54. Harkins KM, Stone AC (2015) Ancient pathogen genomics: insights into timing and adaptation. J Hum Evol 79:137–149.  https://doi.org/10.1016/j.jhevol.2014.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7(9):1008–1025PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hellgren O, Atkinson CT, Bensch S, Albayrak T, Dimitrov D, Ewen JG, Kim KS, Lima MR, Martin L, Palinauskas V, Ricklefs R, Sehgal RNM, Valkiūnas G, Tsuda Y, Marzal A (2014) Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 38(8):842–850.  https://doi.org/10.1111/ecog.01158 CrossRefGoogle Scholar
  57. Hellgren O, Kutzer M, Bensch S, Valkiunas G, Palinauskas V (2013) Identification and characterization of the merozoite surface protein 1 (msp1) gene in a host-generalist avian malaria parasite, Plasmodium relictum (lineages SGS1 and GRW4) with the use of blood transcriptome. Malar J 12:381.  https://doi.org/10.1186/1475-2875-12-381 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485PubMedCrossRefPubMedCentralGoogle Scholar
  59. Honka J, Heino MT, Kvist L, Askeyev IV, Shaymuratova SN, Askeyev OV, Askeyev AO, Heikkinen ME, Searle JB, Aspi J (2018) Over a thousand years of evolutionary history of domestic geese from Russian archaeological sites, analysed using ancient DNA. Genes 9:367PubMedCentralCrossRefGoogle Scholar
  60. Hopken MW, Orning EK, Young JK, Piaggio AJ (2016) Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs. BMC Res Notes 9:14.  https://doi.org/10.1186/s13104-015-1797-1 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedCrossRefPubMedCentralGoogle Scholar
  62. Iezhova TA, Dodge M, Sehgal RNM, Smith TB, Valkiūnas G (2011) New avian Haemoproteus species (Haemosporida: Haemoproteidae) from African birds, with a critique of the use of host taxonomic information in hemoproteid classification. J Parasitol 97:682–694.  https://doi.org/10.1645/GE-2709.1 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Iyenegar A (2014) Forensic DNA analysis for animal protection and biodiversity conservation: a review. J Nat Conserv 22:195–205CrossRefGoogle Scholar
  64. Jacob S, Colmas L, Parthuisot N, Heeb P (2014) Do feather-degrading bacteria actually degrade feather colour? No significant effects of plumage microbiome modifications on feather colouration in wild great tits. Naturwissenschaften 101:929–938PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jacob S, Parthuisot N, Vallat A, Ramon-Portugal F, Helfenstein F, Heeb P (2015) Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in great tits. Funct Ecol 29:1048–1058CrossRefGoogle Scholar
  66. Jan C, Fumagalli L (2016) Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). PeerJ 4:e2416.  https://doi.org/10.7717/peerj.2416 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E, Hebert PDN (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc B 360:1835–1845CrossRefGoogle Scholar
  68. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci 110(34):13904–13909PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC (2004) Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 13:2157–2168.  https://doi.org/10.1111/j.1365-294X.2004.02228.x CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jax E, Wink M, Kraus RH (2018) Avian transcriptomics: opportunities and challenges. J Ornithol 50:1–31Google Scholar
  71. Jedlicka JA, Vo ATE, Almeida PP (2017) Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western bluebirds (Sialia mexicana) in California vineyards. Auk 134:116–127CrossRefGoogle Scholar
  72. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:1225829CrossRefGoogle Scholar
  73. Johnson RN (2011) Conservation genetics and wildlife forensics of birds (Chap.15). In: Huffman JE, Wallace JR (eds) Wildlife forensics: methods and applications. Wiley-Blackwell, OxfordGoogle Scholar
  74. Kapgate SS, Barbuddhe SB, Kumanan K (2015) Next generation sequencing technologies: tool to study avian virus diversity. Acta Virol 59:3–13PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kawakami T, Backström N, Burri R, Husby A, Olason P, Rice AM, Ålund M, Qvarnström A, Ellegren H (2014) Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array. Mol Ecol Resour 14(6):1248–1260PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kearns AM, Restani M, Szabo I, Schrøder-Nielsen A, Kim JA, Richardson H, Gobbert M, Marzluff JM, Fleischer RC, Johnsen A, Omland KE (2017) Genomic evidence of speciation reversal: collapse of cryptic lineages of ravens. Nat Commun 9(1):906. [accepted with revision].CrossRefGoogle Scholar
  77. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006) Host heterogeneity dominates West Nile virus transmission. Proc R Soc B 273:2327–2333.  https://doi.org/10.1098/rspb.2006.3575 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kistler AL, Gancz A, Clubb S, Skewes-cox P, Fischer K, Sorber K, Chiu CY, Lublin A, Mechani S, Farnoushi Y, Greninger A, Wen CC, Karlene SB, Ganem D, Derisi JL (2008) Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virol J 5:88.  https://doi.org/10.1186/1743-422X-5-88 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kistler KE, Vosshall LB, Matthews BJ (2015) Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11(1):51–60PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kohl KD, Connelly JW, Dearing D, Forbey JS (2016) Microbial detoxification in the gut of a specialist avian herbivore, the greater sage-grouse. FEMS Microbiol Lett 363:fnw144PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, Zhou H-W, Rognes T, Caporaso JG, Knight R (2016) Open-source sequence clustering methods improve the state of the art. mSystems 1:e00003-15PubMedPubMedCentralCrossRefGoogle Scholar
  82. Krehenwinkel H, Wolf M, Lim JY, Rominger AJ, Simison WB, Gillespie RG (2017) Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci Rep 7:17668PubMedPubMedCentralCrossRefGoogle Scholar
  83. Križanauskienė A, Hellgren O, Kosarev V, Sokolov L, Bensch S, Valkiūnas G (2006) Variation in host specificity between species of avian hemosporidian parasites: evidence from parasite morphology and cytochrome B gene sequences. J Parasitol 92:1319–1324.  https://doi.org/10.1645/GE-873R.1 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kvist S (2013) Barcoding in the dark?: a critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol Phylogenet Evol 69:39–45PubMedCrossRefPubMedCentralGoogle Scholar
  85. Langevin SA, Bowen RA, Ramey WN, Sanders TA, Maharaj PD, Fang Y, Cornelius J, Barker CM, Reisen WK, Beasley DWC, Barrett ADT, Kinney RM, Huang CYH, Brault AC (2011) Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate. J Gen Virol 92:2810–2820.  https://doi.org/10.1099/vir.0.035535-0 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lauron EJ, Oakgrove KS, Tell LA, Biskar K, Roy SW, Sehgal RNM (2014) Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malar J 13:382.  https://doi.org/10.1186/1475-2875-13-382 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lauron EJ, Yeang HXA, Taffner SM, Sehgal RNM (2015) De novo assembly and transcriptome analysis of Plasmodium gallinaceum identifies the Rh5 interacting protein (ripr), and reveals a lack of EBL and RH gene family diversification. Malar J 14:296–305.  https://doi.org/10.1186/s12936-015-0814-0 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lerner HRL, Fleischer RC (2010) Prospects for the use of next-generation sequencing methods in ornithology. Auk 127:4–15CrossRefGoogle Scholar
  89. Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, Carey HV, Zhang Q, Zheng H, Wei S, Zhang H (2014) Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol 15(12):557PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lutz HL, Marra NJ, Grewe F, Carlson JS, Palinauskas V, Valkiūnas G, Stanhope MJ (2016) Laser capture microdissection microscopy and genome sequencing of the avian malaria parasite, Plasmodium relictum. Parasitol Res 115:4503–4510.  https://doi.org/10.1007/s00436-016-5237-5 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mäkinen H, Vasemägi A, McGinnity P, Cross TF, Primmer CR (2015) Population genomic analyses of early-phase Atlantic Salmon (Salmo salar) domestication/captive breeding. Evol Appl 8:93–107.  https://doi.org/10.1111/eva.12230 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Martinsen ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitology 133:279–288.  https://doi.org/10.1017/S0031182006000424 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273.  https://doi.org/10.1016/j.ympev.2007.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  95. May FJ, Davis CT, Tesh RB, Barrett ADT (2011) Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol 85:2964–2974.  https://doi.org/10.1128/JVI.01963-10 CrossRefPubMedPubMedCentralGoogle Scholar
  96. McClenaghan B, Nol E, Kerr K (2019) Metabarcoding reveals the broad and flexible diet of a declining aerial insectivore. Auk Ornithol Adv 136(1):1–11Google Scholar
  97. McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC (2012) Ultraconserved elements are novel Phylogenomic markers that resolve placental mammal phylogeny when combined with species tree analysis. Genome Res 22:746–754. pmid: 22207614.  https://doi.org/10.1101/gr.125864.111 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17:637–649PubMedCrossRefPubMedCentralGoogle Scholar
  100. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mounce HL, Raisin C, Leonard DL et al (2015) Spatial genetic architecture of the critically-endangered Maui Parrotbill (Pseudonestor xanthophrys): management considerations for reintroduction strategies. Conserv Genet 16:71–84CrossRefGoogle Scholar
  102. Murray DC, Haile J, Dortch J, White NE, Haouchar D, Bellgard MI, Allcock RJ, Prideaux GJ, Bunce M (2013) Scrapheap challenge: a novel bulk-bone metabarcoding method to investigate ancient DNA in faunal assemblages. Sci Rep 3:3371PubMedPubMedCentralCrossRefGoogle Scholar
  103. Murray S, Pascoe B, Meric G, Mageiros L, Yahara K, Hitchings MD, Friedmann Y, Wilkinson TS, Gormley FJ, Mack D, Bray JE (2017a) Recombination-mediated host adaptation by avian Staphylococcus aureus. Genome Biol Evol 9(4):830–842PubMedPubMedCentralCrossRefGoogle Scholar
  104. Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ, Demboski JR, Doll A, Da Fonseca RR, Fulton TL et al (2017b) Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358:951–954PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol 25(10):1375–1380PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nichols RV, Vollmers C, Newsom LA, Wang Y, Heintzman PD, Leighton M, Green RE, Shapiro B (2018) Minimizing polymerase biases in metabarcoding. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12895 CrossRefGoogle Scholar
  107. Nikolay B, Dupressoir A, Firth C, Faye O, Boye CS, Diallo M, Sall AA (2013) Comparative full length genome sequence analysis of Usutu virus isolates from Africa. Virol J 10(1):217PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nilsson E, Taubert H, Hellgren O, Huang X, Palinauskas V, Bensch S (2016) Multiple cryptic species of sympatric generalists within the avian blood parasite. Haemoproteus majoris. J Evol Biol 29:1812–1826.  https://doi.org/10.1111/jeb.12911 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ottenburghs J (2019) Avian species concepts in the light of genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  110. Ottenburghs J, Kraus RHS, van Hooft P, van Wieren SE, Ydenberg RC, Prins HHT (2017) Avian introgression in the genomic era. Avian Res 8:30CrossRefGoogle Scholar
  111. Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141:1223–1232.  https://doi.org/10.1017/S0031182014000560 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA (2015) Genomic single-nucleotide polymorphisms confirm that Gunnison and greater sage-grouse are genetically well differentiated and that the bi-state population is distinct. Condor 117:217–227CrossRefGoogle Scholar
  113. Palinauskas V, Ziegyte R, Ilgunas M, Iezhova TA, Bernotiene R, Bolshakov CV, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62.  https://doi.org/10.1016/j.ijpara.2014.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Park TS, Lee HC, Rengaraj D, Han JY (2014) Germ cell, stem cell, and genomic modification in birds. J Stem Cell Res Ther 4(201):2Google Scholar
  115. Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM, Johnson PT (2012) From superspreaders to disease hotspots: linking transmission across hosts and space. Front Ecol Environ 10:75–82.  https://doi.org/10.1890/110111 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Pennock DS, Dimmick WW (1997) Critique of the evolutionarily significant unit as a definition for “distinct population segments” under the U.S. endangered species act. Conserv Biol 11:611–619CrossRefGoogle Scholar
  117. Peters JL, Lavretsky P, DaCosta JM, Bielefeld RR, Feddersen JC, Sorenson MD (2016) Population genomic data delineate conservation units in mottled ducks (Anas fulvigula). Biol Conserv 203:272–281CrossRefGoogle Scholar
  118. Phillimore AB, Owens IPF (2006) Are subspecies useful in evolutionary and conservation biology? Proc R Soc B 273:1049–1053PubMedCrossRefPubMedCentralGoogle Scholar
  119. Pilo P, Vilei EM, Peterhans E, Bonvin-klotz L, Stoffel MH, Dobbelaere D, Frey J (2005) A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides. Small Colony 187:6824–6831.  https://doi.org/10.1128/JB.187.19.6824 CrossRefGoogle Scholar
  120. Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B, Müller I, Baglione V, Unneberg P, Wikelski M, Grabherr MG, Wolf JB (2014) The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–1414CrossRefGoogle Scholar
  121. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11:1359–1375CrossRefGoogle Scholar
  122. Ralls K, Ballou JD (2013) Captive breeding and reintroduction. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1, 2nd edn. Academic, Waltham, MA, pp 662–667CrossRefGoogle Scholar
  123. Rascha JMN, Mirte B, Richard PMAC et al (2016) The use of genomics in conservation management of the endangered Visayan warty pig (Sus cebifrons). Int J Genom 2016:5613862.  https://doi.org/10.1155/2016/5613862 CrossRefGoogle Scholar
  124. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life database system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364PubMedPubMedCentralCrossRefGoogle Scholar
  125. Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SY, Ujvari B (2017) Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. Infect Genet Evol 53:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  126. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552PubMedCrossRefPubMedCentralGoogle Scholar
  127. Robertson JM, Langin KM, Sillett TS, Morrison SA, Ghalambor CK, Funk WC (2014) Identifying evolutionarily significant units and prioritizing populations for management on islands. Monogr West N Am Natural 7:397–411Google Scholar
  128. Roggenbuck M, Schnell IB, Blom N, Bælum J, Bertelsen MF, Sicheritz-Pontén T, Sørensen SJ, Gilbert MTP, Graves GR, Hansen LH (2014) The microbiome of New World vultures. Nat Commun 5:5498PubMedCrossRefPubMedCentralGoogle Scholar
  129. Romanov MN, Tuttle EM, Houck ML, Modi WS, Chemnick LG, Korody ML, Mork EMS et al (2009) The value of avian genomics to the conservation of wildlife. BMC Genomics 10(2):S10PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  131. Ryder O, Miller W, Ralls K, Ballou JD, Steiner CC, Mitelberg A, Romanov MN, Chemnick LG, Mace M, Schuster S (2016) Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International plant and animal genome XXIV conference, 8–13 Jan 2016, San Diego, CA, USA.Google Scholar
  132. Safran RJ, Scordato ESC, Wilkins MR, Hubbard JK, Jenkins BR, Albrecht T, Flaxman SM, Karaardıç H, Vortman Y, Lotem A, Nosil P, Pap P, Shen S, Chan S-F, Parchman TL, Kane NC (2016) Genome-wide differentiation in closely related populations: the roles of selection and geographic isolation. Mol Ecol 25:3865–3883.  https://doi.org/10.1111/mec.13740 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Unnasch TR (2007) Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens Complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7:365–386.  https://doi.org/10.1089/vbz.2006.0602.Host CrossRefPubMedPubMedCentralGoogle Scholar
  134. Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68CrossRefGoogle Scholar
  135. Schouler C, Koffman F, Amory C, Leroy-Setrin S, Moulin-Schouleur M (2004) Genomic subtraction for the identification of putative new virulence factors of an avian pathogenic Escherichia coli strain of O2 serogroup. Microbiology 150:2973–2984.  https://doi.org/10.1099/mic.0.27261-0 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Shapiro LH, Canterbury RA, Stover DM, Fleischer RC (2004) Reciprocal introgression between golden-winged warblers (Vermivora chrysoptera) and blue-winged warblers (V. pinus) in eastern North America. Auk 121:1019–1030CrossRefGoogle Scholar
  137. Smith BR (2010) Genetic management of groups. Doctoral dissertation. Online. http://drum.lib.umd.edu/bitstream/handle/1903/11187/Smith_umd_0117E_11750.pdf?sequence=1&isAllowed=y
  138. Sotelo E, Fernández-Pinero J, Llorente F, Vázquez A, Moreno A, Agüero M, Cordioli P, Tenorio A, Jimeénez-Clavero MÁ (2011) Phylogenetic relationships of Western Mediterranean West Nile virus strains (1996-2010) using full-length genome sequences: single or multiple introductions? J Gen Virol 92:2512–2522.  https://doi.org/10.1099/vir.0.033829-0 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Srivathsan A, Sha JCM, Vogler AP, Meier R (2015) Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus). Mol Ecol Resour 15:250–261PubMedCrossRefPubMedCentralGoogle Scholar
  140. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, Prins TW, Kok E (2016) Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem 408:4615–4630PubMedPubMedCentralCrossRefGoogle Scholar
  141. Starr JR, Naczi RFC, Chouinard BN (2009) Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour 9:151–163PubMedCrossRefPubMedCentralGoogle Scholar
  142. Stervander M, Alström P, Olsson U, Ottosson U, Hansson B, Bensch S (2016) Multiple instances of paraphyletic species and cryptic taxa revealed by mitochondrial and nuclear RAD data for Calandrella larks (Aves: Alaudidae). Mol Phylogenet Evol 102:233–245.  https://doi.org/10.1016/j.ympev.2016.05.032 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Stillman JH, Armstrong E (2015) Genomics are transforming our understanding of responses to climate change. Bioscience 65:237–246CrossRefGoogle Scholar
  144. Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213:4125–4136PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sun H, Liu P, Nolan LK, Lamont SJ (2015) Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 16(1):690PubMedPubMedCentralCrossRefGoogle Scholar
  146. Szczepanek SM, Frasca S, Schumacher VL, Liao X, Padula M, Djordjevic SP, Geary SJ (2010) Identification of lipoprotein MslA as a neoteric virulence factor of Mycoplasma gallisepticum. Infect Immun 78:3475–3483.  https://doi.org/10.1128/IAI.00154-10 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Taberlet P, Coissac E, Pampanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050PubMedCrossRefPubMedCentralGoogle Scholar
  148. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–893.  https://doi.org/10.1038/nature04230 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Toews DPL, Campagna L, Taylor SA, Balakrishnan CN, Baldassarre DT, Deane-Coe PE, Harvey MG et al (2015) Genomic approaches to understanding the early stages of population divergence and speciation in birds. Auk 133:13–30CrossRefGoogle Scholar
  150. Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ (2016) Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr Biol 26:2313–2318.  https://doi.org/10.1016/j.cub.2016.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Trevelline BK, Latta SC, Marshall LC, Nuttle T, Porter BA (2016) Molecular analysis of nestling diet in a long-distance Neotropical migrant, the Louisiana waterthrush (Parkesia motacilla). Auk 415:428Google Scholar
  152. Trevelline BK, Nuttle T, Hoenig BD, Brouwer NL, Porter BA, Latta SC (2018) DNA metabarcoding of nestling feces reveals provisioning of aquatic prey and resource partitioning among Neotropical songbirds in a riparian habitat. Oecologia 187:85–98PubMedCrossRefPubMedCentralGoogle Scholar
  153. Tulman ER, Liao X, Szczepanek SM, Ley DH, Kutish GF, Geary SJ (2012) Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel north American house finch epizootic strain of Mycoplasma gallisepticum. Microbiology 158:2073–2088.  https://doi.org/10.1099/mic.0.058560-0 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Valkiūnas G, Bensch S, Iezhova TA, Križanauskien A, Bolshakov CV, Seo M, Kho B, Guk S, Lee S, Chai J (2006) Nested Cytochrome B polymerase chain reaction diagnostics underestimate mixed infections of avian blood Haemosporidian parasites: microscopy is still essential. J Parasitol 92:416–418CrossRefGoogle Scholar
  155. Vedder O, Bouwhuis S, Sheldon BC (2013) Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol 11:1–10CrossRefGoogle Scholar
  156. Videvall E, Cornwallis CK, Ahrén D, Palinauskas V, Valkiūnas G, Hellgren O (2017) The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression. Mol Ecol 26:2939–2958.  https://doi.org/10.1111/mec.14085 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Videvall E, Cornwallis CK, Palinauskas V, Valkiūnas G, Hellgren O (2015) The avian transcriptome response to malaria infection. Mol Biol Evol 32:1255–1267.  https://doi.org/10.1093/molbev/msv016 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110CrossRefGoogle Scholar
  159. Vo ATE, Jedlicka JA (2014) Protocols for metagenomics DNA extraction and Illumina amplicon library preparation for faecal and swab samples. Mol Ecol Resour 14:1183–1197PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wahl LM (2002) The division of labor: genotypic versus phenotypic specialization. Am Nat 160:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  161. Waite DW, Taylor MW (2015) Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 6:673PubMedPubMedCentralCrossRefGoogle Scholar
  162. Waite DW, Deines P, Taylor MW (2013) Quantifying the impact of storage procedures for faecal bacteriotherapy in the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus). Zoo Biol 32:620–625PubMedCrossRefPubMedCentralGoogle Scholar
  163. Waite DW, Eason DK, Taylor MW (2014) Influence of hand-rearing and bird age on the faecal microbiota of the critically endangered kakapo. Appl Environ Microbiol 80:4650–4658PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wang J, Zhang Z, Chang F, Yin D (2016) Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15. PeerJ 4:e2079PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  166. Waples RS (1995) Evolutionarily significant units and the conservation of biodiversity under the endangered species act. Am Fish Soc Symp 17:8–27Google Scholar
  167. Weissensteiner MH, Suh A (2019) Repetitive DNA—the dark matter of avian genomics. In: Kraus RHS (ed) Avian genomics in ecology and evolution. Springer, ChamGoogle Scholar
  168. Weyrich A, Lenz D, Jeschek M, Chung TH, Rubensam K, Goritz F, Jewgenow K, Fickel J (2016) Paternal intergenerational epigenetic response to heat exposure in male wild Guinea pigs. Mol Ecol 25:1729–1740PubMedCrossRefPubMedCentralGoogle Scholar
  169. Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:1–18CrossRefGoogle Scholar
  170. Wilkinson DA, Dietrich M, Lebarbenchon C, Jaeger A, Le Rouzic C, Bastien M, Lagadec E, Mccoy KD, Pascalis H, Le Corre M, Dellagi K, Tortosa P (2014) Massive infection of seabird ticks with bacterial species related to Coxiella burnetii. Appl Environ Microbiol 80:3327–3333.  https://doi.org/10.1128/AEM.00477-14 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667PubMedPubMedCentralCrossRefGoogle Scholar
  172. Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 12:190–197. ISSN:1672-0229.  https://doi.org/10.1016/j.gpb.2014.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan P, Ni G, Tian J, Xu X, Liu T, Jiang R, Wu G, Zhou M, Tang J, Qin T, Wang S, Feng GL, Huasang J, Luosang W, Wang F, Chen Y, Wang X, Zheng Z, Li Z, Bianba G, Yang X, Wang S, Tang G, Gao Y, Chen Z, Luo L, Gusang Z, Cao Q, Zhang W, Ouyang X, Ren H, Liang H, Zheng Y, Huang J, Li L, Bolund K, Kristiansen Y, Li Y, Zhang X, Zhang R, Li S, Li H, Yang R, Nielsen JW, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zarzoso-Lacoste D, Bonnaud E, Corse E, Gilles A, Meglecz E, Costedoat C, Gouni A, Vidal E (2016) Improving morphological diet studies with molecular ecology: an application for invasive mammal predation on island birds. Biol Conserv 193:134–142CrossRefGoogle Scholar
  176. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, Fonseca RR, Alfaro-núñez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(80):1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zhang G (2015) Genomics: bird sequencing project takes off. Nature 522:34CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Loren Cassin-Sackett
    • 1
  • Andreanna J. Welch
    • 2
  • Madhvi X. Venkatraman
    • 3
  • Taylor E. Callicrate
    • 4
  • Robert C. Fleischer
    • 3
    Email author
  1. 1.Department of BiologyUniversity of LouisianaLafayetteUSA
  2. 2.Department of BiosciencesDurham UniversityDurhamUK
  3. 3.Center for Conservation GenomicsSmithsonian Conservation Biology Institute, National Zoological ParkWashingtonUSA
  4. 4.Species Conservation Toolkit Initiative, Chicago Zoological SocietyBrookfieldUSA

Personalised recommendations