Reusable Garbled Turing Machines Without FHE

  • Yongge WangEmail author
  • Qutaibah M. Malluhi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)


Since Yao introduced the garbled circuit concept in 1980s, it has been an open problem to design efficient reusable garbled Turing machines/circuits. Recently, Goldwasser et al. and Garg et al. answered this question affirmatively by designing reusable garbled circuits and reusable garbled Turing machines. Both of these reusable garbling schemes use fully homomorphic encryption (FHE) schemes as required building components. Here, we use multilinear maps to design a reusable Turing machine garbling scheme that will not need any FHE schemes. Though it is not clear whether our multilinear map based garbling approach could be more efficient than FHE based garbling approach, the goal of this paper is to develop alternative techniques for resuable garbling schemes to stimulate further research in this direction.


  1. 1.
    Albrecht, M., Davidson, A.: Are graded encoding schemes broken yet?
  2. 2.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive, 2013:689 (2013)Google Scholar
  3. 3.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). Scholar
  4. 4.
    Bellare, M., Hoang, V., Rogaway, P.: Foundations of garbled circuits. In: Proceedings 2012 ACM CCS, pp. 784–796. ACM (2012)Google Scholar
  5. 5.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs and proof-carrying data. In: Proceedings of 45th ACM STOC, pp. 111–120. ACM (2013)Google Scholar
  6. 6.
    Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their applications. Technical report, Cryptology ePrint Archive, Report 2014/771 (2014).
  7. 7.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). Scholar
  8. 8.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). Scholar
  9. 9.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and ram programs. In: Proceedings of STOC 15, New York, NY, USA. ACM (2015)Google Scholar
  10. 10.
    Canetti, R., Holmgren, J.: Fully succinct garbled ram (2015)Google Scholar
  11. 11.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. J. Assoc. Comput. Math. 13, 547–569 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of IEEE 54th FOCS, pp. 40–49. IEEE (2013)Google Scholar
  13. 13.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Proceedings of 45th ACM STOC, pp. 467–476. ACM (2013)Google Scholar
  14. 14.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Proceedings of STOC 15, New York, NY, USA. ACM (2015)Google Scholar
  15. 15.
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). Scholar
  16. 16.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). Scholar
  17. 17.
    Goldwasser, S., Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of 45th STOC, pp. 555–564. ACM (2013)Google Scholar
  18. 18.
    Huang, M.-D.A.: Trilinear maps for cryptography. arXiv preprint arXiv:1803.10325 (2018)
  19. 19.
    Huang, M.-D.A.: Trilinear maps for cryptography ii. arXiv preprint arXiv:1810.03646 (2018)
  20. 20.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: Proceedings of 40th ACM STOC, pp. 433–442. ACM (2008)Google Scholar
  21. 21.
    Koppula, V., Lewko, A., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: Proceedings of STOC 15, New York, NY, USA. ACM (2015)Google Scholar
  22. 22.
    Lin, H., Pass, R.: Succinct garbling schemes and applications. Technical report, Cryptology ePrint Archive, Report 2014/766 (2014).
  23. 23.
    Pippenger, N., Fischer, M.: Relations among complexity measures. J. ACM 26(2), 361–381 (1979)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yao, A.: How to generate and exchange secrets. In: Proceedings of 27th IEEE FOCS, pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Software and Information SystemsUNC CharlotteCharlotteUSA
  2. 2.Department of Computer Science and EngineeringQatar UniversityDohaQatar

Personalised recommendations