Advertisement

Quasi-Dyadic Girault Identification Scheme

  • Brice Odilon BoidjeEmail author
  • Cheikh Thiecoumba Gueye
  • Gilbert Ndollane Dione
  • Jean Belo Klamti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

Zero-knowledge identification schemes allow a prover to convince a verifier that a certain fact is true, while not revealing any additional information.

In this paper, we propose a scheme whose security relies on the hardness of the Quasi-Dyadic Subcode Equivalence and the Quasi-dyadic syndrome decoding problems. Our code-based scheme is an improvement of the code-based identification scheme devised by Girault. Our construction uses quasi-dyadic subcode with a cheating probability of 1/2. Using quasi-dyadic subcode allows to reduce matrix size and also the communication cost by sending lower data.

Keywords

Code-based cryptography Identification scheme Syndrome decoding problem Zero-knowledge Quasi-dyadic subcode 

Notes

Acknowledgments

This work is supported by CEA-MITIC/Project CBC and the government of Senegal’s Ministry of Higher Education and Research for ISPQ project.

References

  1. 1.
    Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code-based identification scheme with reduced communication scheme. In: IEEE Information Theory Workshop 2011, pp. 648–652 (2011)Google Scholar
  2. 2.
    Berger, T., Gueye, C.-T., Klamti, J.-B.: Generalized subspace subcodes with application in cryptologyGoogle Scholar
  3. 3.
    Berger, T.P., Gueye, C.T., Klamti, J.B.: A NP-complete problem in coding theory with application to code based cryptography. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 230–237. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55589-8_15CrossRefGoogle Scholar
  4. 4.
    Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identification with lattices. Tatra Mountains Math. Publ. 53(1), 33–63 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14712-8_16CrossRefGoogle Scholar
  6. 6.
    Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19574-7_12CrossRefGoogle Scholar
  7. 7.
    Dambra, A., Gaborit, P., Roussellet, M., Schrek, J., Tafforeau, N.: Improved secure implementation of code-based signature schemes on embedded devices’. In: IACR Cryptology ePrint Archive, p. 163 (2014)Google Scholar
  8. 8.
    Han, M., Feng, X., Ma, S.: An improved zero-knowledge identification scheme based on quasi-dyadic codes. Int. J. Secur. Appl. 10(10), 181–190 (2016)Google Scholar
  9. 9.
    Cayrel, P.-L., Diagne, M.K., Gueye, C.T.: NP-completeness of the Goppa parameterised random binary quasi-dyadic syndrome decoding problem. IJICoT 4(4), 276–288 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78440-1_10CrossRefGoogle Scholar
  11. 11.
    Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 203–216. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38616-9_14CrossRefzbMATHGoogle Scholar
  12. 12.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_2CrossRefGoogle Scholar
  13. 13.
    Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 5769 (1996)MathSciNetGoogle Scholar
  14. 14.
    Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0030367CrossRefGoogle Scholar
  15. 15.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02384-2_6CrossRefGoogle Scholar
  16. 16.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05445-7_24CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brice Odilon Boidje
    • 1
    Email author
  • Cheikh Thiecoumba Gueye
    • 1
  • Gilbert Ndollane Dione
    • 1
  • Jean Belo Klamti
    • 1
  1. 1.Faculté des Sciences et Techniques, DMI, LACGAAUniversité Cheikh Anta DiopDakarSenegal

Personalised recommendations