Advertisement

Faster Scalar Multiplication on the x-Line: Three-Dimensional GLV Method with Three-Dimensional Differential Addition Chains

  • Hairong YiEmail author
  • Guiwen Luo
  • Dongdai Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

On the quadratic twist of a GLV curve, we explore faster scalar multiplication on its x-coordinate system utilizing three-dimensional GLV method. We construct and implement two kinds of three-dimensional differential addition chains, one of which is uniform and the other is non-uniform but runs faster. Implementations show that at about 254-bit security level, the triple scalar multiplication using our second differential addition chains runs about \(26\%\) faster than the straightforward computing using Montgomery ladder, and about \(6\%\) faster that the double scalar multiplication using DJB chains.

Keywords

Scalar multiplication GLV methods Differential Addition Chains DJB chains 

Notes

Acknowledgement

We would like to thank Yuqing Zhu for his kind advice and selfless help on the first version of this work. And we would like to thank the anonymous reviewers for their detailed comments and suggestions. This work is supported by National Natural Science Foundation of China (Grant No. 61872359).

References

  1. 1.
    Akishita, T.: Fast simultaneous scalar multiplication on elliptic curve with montgomery form. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 255–267. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45537-X_20CrossRefGoogle Scholar
  2. 2.
    Azarderakhsh, R., Karabina, K.: A new double point multiplication algorithm and its application to binary elliptic curves with endomorphisms. IEEE Trans. Comput. 63(10), 2614–2619 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J.: Differential addition chains. Technical Report (2006). http://cr.yp.to/ecdh/diffchain-20060219.pdf
  4. 4.
    Brown, D.R.: Multi-dimensional montgomery ladders for elliptic curves. Cryptology ePrint Archive, Report 2006/220 (2006). https://eprint.iacr.org/2006/220
  5. 5.
    Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press (2005)Google Scholar
  6. 6.
    Costello, C., Hisil, H., Smith, B.: Faster compact diffie–hellman: endomorphisms on the x-line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 183–200. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_11CrossRefGoogle Scholar
  7. 7.
    Costello, C., Longa, P.: Four\(\mathbb{Q}\): four-dimensional decompositions on a \(\mathbb{Q}\)-curve over the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_10CrossRefGoogle Scholar
  8. 8.
    Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_30CrossRefGoogle Scholar
  9. 9.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_11CrossRefGoogle Scholar
  10. 10.
    Zhi, H., Longa, P., Maozhi, X.: Implementing the 4-dimensional GLV method on GLS elliptic curves with \(j\)-invariant 0. Des. Codes Crypt. 63(3), 331–343 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hutchinson, A., Karabina, K.: Constructing multidimensional differential addition chains and their applications. J. Cryptographic Eng. 1–19 (2017)Google Scholar
  12. 12.
    Longa, P., Sica, F.: Four-dimensional gallant-lambert-vanstone scalar multiplication. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–739. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_43CrossRefGoogle Scholar
  13. 13.
    Montgomery, P.L.: Evaluating recurrences of form \({X}_{m+n} = f({X}_m, {X}_n, {X}_{m-n})\) via lucas chains (1983). ftp.cwi.nl:/pub/pmontgom/lucas.ps.gzGoogle Scholar
  14. 14.
    Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rao, S.R.S.: A note on Schoenmakers algorithm for multi exponentiation. In: 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE), vol. 4, pp. 384–391 (2015)Google Scholar
  16. 16.
    Subramanya Rao, S.R.: Three dimensional montgomery ladder, differential point tripling on montgomery curves and point quintupling on weierstrass’ and edwards curves. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 84–106. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_5CrossRefGoogle Scholar
  17. 17.
    Stam, M.: Speeding up subgroup cryptosystems. Technische Universiteit Eindhoven (2003)Google Scholar
  18. 18.
    Yi, H., Zhu, Y., Lin, D.: Refinement of the four-dimensional GLV method on elliptic curves. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 23–42. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72565-9_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations