Advertisement

Virtual Security Evaluation

An Operational Methodology for Side-Channel Leakage Detection at Source-Code Level
  • Youssef Souissi
  • Adrien Facon
  • Sylvain GuilleyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11445)

Abstract

“An ounce of prevention is worth a pound of cure”. This paper presents a methodology to detect side-channel leakage at source-code level. It leverages simple tests performed on noise-less traces of execution, and returns to the developer accurate information about the security issues. The feedback is in terms of location (where in code, when in time), in terms of security severity (amount and duration of leakage), and most importantly, in terms of possible reason for the leakage. After the source code (and subsequently the compiled code) has been sanitized, attack attempts complement the methodology to test the implementation against realistic exploitations. This last steps allows to validate whether the tolerated leakages during the sanitizing stage are indeed benign.

Keywords

Virtual evaluation methodology Pre-silicon analysis Source code vulnerability Exploitability checking 

References

  1. 1.
    3rd IEEE International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain, July 2–4, 2018. IEEE (2018)Google Scholar
  2. 2.
    Bhasin, S., Danger, J.L., Guilley, S., Najm, Z.: NICV: normalized inter-class variance for detection of side-channel leakage. In: IEEE International Symposium on Electromagnetic Compatibility (EMC 2014/Tokyo), May 12–16 2014. Session OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sciences), Chiyoda, Tokyo, Japan (2014)Google Scholar
  3. 3.
    Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30564-4_5CrossRefGoogle Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_2CrossRefGoogle Scholar
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_3CrossRefGoogle Scholar
  6. 6.
    Easter, R.J., Quemard, J.-P., Kondo, J.: Text for ISO/IEC 1st CD 17825 - Information technology - Security techniques - Non-invasive attack mitigation test metrics for cryptographic modules, March 22 2014. Prepared within ISO/IEC JTC 1/SC 27/WG 3 (2014)Google Scholar
  7. 7.
    Facon, A., Guilley, S., Lec’hvien, M., Schaub, A., Souissi, Y.: Detecting cache-timing vulnerabilities in post-quantum cryptography algorithms. In: 3rd IEEE International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain, July 2–4, 2018 [1], pp. 7–12 (2018)Google Scholar
  8. 8.
    Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 233–250. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_14CrossRefGoogle Scholar
  9. 9.
    Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation, September 2011. In: NIST Non-Invasive Attack Testing Workshop (2011). http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
  10. 10.
    Jaffe, J., Rohatgi, P., Witteman, M.F.: Efficient side-channel testing for public key algorithms: RSA case study, September 2011. In: NIST Non-Invasive Attack Testing Workshop (2011). http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf
  11. 11.
    Kocher, P.: Complexity and the challenges of securing SoCs. In: Stok, L., Dutt, N.D., Hassoun, S. (eds) Proceedings of the 48th Design Automation Conference, DAC 2011, San Diego, California, USA, June 5–10, 2011, pp. 328–331. ACM (2011)Google Scholar
  12. 12.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  13. 13.
    Kocher, P.C.: Leak-resistant cryptographic indexed key update, March 25 2003. United States Patent 6,539,092 filed on July 2nd, 1999 at San Francisco, CA, USA (2003)Google Scholar
  14. 14.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  15. 15.
    Liu, H., Qian, G., Tsunoo, Y., Goto, S.: The switching glitch power leakage model. JSW 6(9), 1787–1794 (2011)Google Scholar
  16. 16.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, New York (2006). ISBN 0-387-30857-1. http://www.dpabook.org/zbMATHGoogle Scholar
  17. 17.
    Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES Hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006).  https://doi.org/10.1007/11894063_7CrossRefGoogle Scholar
  18. 18.
    Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07536-5_20CrossRefGoogle Scholar
  19. 19.
    Souissi, Y., Danger, J.-L., Guilley, S., Bhasin, S., Nassar, M.: Common framework to evaluate modern embedded systems against side-channel attacks. In: IEEE International Conference on Technologies for Homeland Security (HST), pp. 86–91, November 15–17 2011. Westin Hotel, Waltham, MA, USA (2011).  https://doi.org/10.1109/THS.2011.6107852
  20. 20.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_26CrossRefGoogle Scholar
  21. 21.
    Takarabt, S., et al.: Pre-silicon embedded system evaluation as new EDA tool for security verification. In: 3rd IEEE International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain, July 2–4, 2018 [1], pp. 74–79 (2018)Google Scholar
  22. 22.
    Veshchikov, N., Guilley, S.: Use of simulators for side-channel analysis. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26–28, 2017, pp. 51–59. IEEE (2017)Google Scholar
  23. 23.
    Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_44CrossRefGoogle Scholar
  24. 24.
    Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel distinguishers. J. Crypt. Eng. 1(2), 145–160 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Youssef Souissi
    • 1
  • Adrien Facon
    • 1
    • 2
  • Sylvain Guilley
    • 1
    • 2
    • 3
    Email author
  1. 1.Secure-IC S.A.S.Cesson-SévignéFrance
  2. 2.École Normale Supérieure, Département d’informatiqueParisFrance
  3. 3.LTCI, Télécom ParisTech, Institut Polytechnique de ParisParisFrance

Personalised recommendations