A Survey on Accessible Context-Aware Systems

  • Iyad Abu DoushEmail author
  • Issam Damaj
  • Mohammed Azmi Al-Betar
  • Mohammed A. Awadallah
  • Ra’ed M. Al-khatib
  • Alaa Eddin Alchalabi
  • Asaju L. Bolaji
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


At the present time, 15% of the growing world population is estimated to have disabilities and special needs. Disabilities can seriously limit participation in regular life activities, such as controlling home facilities, using transportation services, joining social events, accessing educational contents, to name but a few. With the advancement in ubiquitous and pervasive computing, context-aware systems (CAS) are gaining much attention and demonstrating a stronger association with applications for people with disability. Modern CAS tend to minimize user interactions with the system and provide seamless services, automated awareness, and ambient intelligence and monitoring. CAS for people with disability can detect the surrounding environment, identify an appropriate user interface, interact, and service the user depending on the situation. Nevertheless, a large number of investigations on CAS for people with disability are presented in the literature, limited systems are practically available in the market. In this paper, we survey the literature to thoroughly analyze, evaluate, and critique state-of-the-art research in accessible CAS. Systems are classified according to the type of disability; besides, many interaction models are examined and strategies for making CAS accessible are identified. The investigation confirms the need for frameworks that enable improving security aspects, better exploiting modern hardware systems, performing reliable verification, and further supporting system customization and adaptation.


Context-aware systems Disability System architecture Applications User interface Accessible context-aware Accessible Internet of things 


  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., & Vecchio, A. (2012). A smartphone-based fall detection system. Pervasive and Mobile Computing, 8(6), 883–899.CrossRefGoogle Scholar
  2. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, HUC ’99 (pp. 304–307). London: Springer.CrossRefGoogle Scholar
  3. Abowd, G. D., & Mynatt, E. D. (2000). Charting past, present, and future research in ubiquitous computing. ACM Transactions on Computer-Human Interaction, 7(1), 29–58.CrossRefGoogle Scholar
  4. Ahn, S., & Kim, D. (2006). Proactive context-aware sensor networks (pp. 38–53). Berlin: Springer.Google Scholar
  5. Al-Chalabi, A. E., Essa, S., Shahzad, H., & Damaj, I. (2015). A wearable and ubiquitous NFC wallet. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 152–157). Piscataway: IEEE.CrossRefGoogle Scholar
  6. Al-Qudah, Z., Doush, I. A., Alkhateeb, F., Maghayreh, E. A., & Al-Khaleel, O. (2014). Utilizing mobile devices’ tactile feedback for presenting braille characters: An optimized approach for fast reading and long battery life. Interacting with Computers, 26(1), 63–74.CrossRefGoogle Scholar
  7. Alegre, U., Augusto, J. C., & Clark, T. (2016). Engineering context-aware systems and applications: A survey. Journal of Systems and Software, 117(suppl. C), 55–83.Google Scholar
  8. Aloulou, H., Mokhtari, M., Tiberghien, T., Biswas, J., & Yap, P. (2014). An adaptable and flexible framework for assistive living of cognitively impaired people. IEEE Journal of Biomedical and Health Informatics, 18(1), 353–360.CrossRefGoogle Scholar
  9. Aly, W. H. F. (2014). MNDWSN for helping people with different disabilities. International Journal of Distributed Sensor Networks, 10(7), 489289.CrossRefGoogle Scholar
  10. Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.CrossRefGoogle Scholar
  11. Barkhuus, L., & Dey, A. (2003). Is context-aware computing taking control away from the user? Three levels of interactivity examined (pp. 149–156). Berlin: Springer.Google Scholar
  12. Beaudouin-Lafon, M. (2000). Instrumental interaction: An interaction model for designing post-wimp user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00 (pp. 446–453).Google Scholar
  13. Bellavista, P., Corradi, A., Fanelli, M., & Foschini, L. (2012). A survey of context data distribution for mobile ubiquitous systems. ACM Computing Surveys, 44(4), 24:1–24:45.Google Scholar
  14. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161–180.CrossRefGoogle Scholar
  15. Bobek, S., & Nalepa, G. J. (2017a). Uncertain context data management in dynamic mobile environments. Future Generation Computer Systems, 66, 110–124.CrossRefGoogle Scholar
  16. Bobek, S., & Nalepa, G. J. (2017b). Uncertainty handling in rule-based mobile context-aware systems. Pervasive and Mobile Computing, 39, 159–179.CrossRefGoogle Scholar
  17. Bozgeyikli, L., Bozgeyikli, E., Clevenger, M., Raij, A., Alqasemi, R., Sundarrao, S., et al. (2015). Vr4vr: Vocational rehabilitation of individuals with disabilities in immersive virtual reality environments. In Proceedings of the 8th ACM International Conference on Pervasive Technologies Related to Assistive Environments, PETRA ’15 (pp. 54:1–54:4).Google Scholar
  18. Cavender, A., Trewin, S., & Hanson, V. (2008). General writing guidelines for technology and people with disabilities. ACM SIGACCESS Accessibility and Computing, 1(92), 17–22.CrossRefGoogle Scholar
  19. Chaudary, B., & Pulli, P. (2014). Smart cane outdoor navigation system for visually impaired deaf-blind and blind persons. Journal of Communication Disorders, Deaf Studies and Hearing Aids, 125(2), 1–9.Google Scholar
  20. Chen, H. (2004). An Intelligent Broker Architecture for Pervasive Context-Aware Systems. Ph.D. Thesis, University of Maryland, Baltimore County.Google Scholar
  21. Damaj, I. (2007). Higher-level hardware synthesis of the Kasumi cryptographic algorithm. Journal of Computer Science and Technology, 22(1), 60–70.CrossRefGoogle Scholar
  22. Damaj, I., & Diab, H. (2001). Performance analysis of extended vector-scalar operations using reconfigurable computing. In ACS/IEEE International Conference on Computer Systems and Applications, 2001 (pp. 227–232). Piscataway: IEEE.CrossRefGoogle Scholar
  23. Damaj, I., Imdoukh, M., & Zantout, R. (2017). Parallel hardware for faster morphological analysis. Journal of King Saud University - Computer and Information Sciences. CrossRefGoogle Scholar
  24. Damaj, I., & Kasbah, S. (2018). An analysis framework for hardware and software implementations with applications from cryptography. Computers & Electrical Engineering, 69, 572–584.CrossRefGoogle Scholar
  25. Domingo, M. C. (2012). An overview of the internet of things for people with disabilities. Journal of Network and Computer Applications, 35(2), 584–596.CrossRefGoogle Scholar
  26. Doush, I. A., Alkhateeb, F., Maghayreh, E. A., & Al-Betar, M. A. (2013a). The design of RIA accessibility evaluation tool. Advances in Engineering Software, 57, 1–7.CrossRefGoogle Scholar
  27. Doush, I. A., Alkhateeb, F., Maghayreh, E. A., Alsmadi, I., & Samarah, S. (2012). Annotations, collaborative tagging, and searching mathematics in e-learning. CoRR abs/1211.1780.Google Scholar
  28. Doush, I. A., Alshattnawi, S., Al-Tamimi, A., Alhasan, B., & Hamasha, S. (2017). ISAB: Integrated indoor navigation system for the blind. Interacting with Computers, 29(2), 181–202.Google Scholar
  29. Doush, I. A., Alshattnawi, S., & Barhoush, M. (2015). Non-visual navigation interface for completing tasks with a predefined order using mobile phone: a case study of pilgrimage. International Journal of Mobile Network Design and Innovation, 6(1), 1–13.CrossRefGoogle Scholar
  30. Doush, I. A., & Al-Bdarneh, S. (2013). Automatic semantic generation and Arabic translation of mathematical expressions on the web. International Journal of Web-Based Learning and Teaching Technologies, 8(1), 1–16.CrossRefGoogle Scholar
  31. Doush, I. A., Bany-Mohammed, A., Ali, E., Al-Betar, M. A. (2013b). Towards a more accessible e-government in Jordan: An evaluation study of visually impaired users and web developers. Behaviour & IT, 32(3), 273–293.Google Scholar
  32. Doush, I. A., & Pontelli, E. (2010). Integrating semantic web and folksonomies to improve e-learning accessibility. In Proceedings of 12th International Conference on Computers Helping People with Special Needs, ICCHP 2010, Vienna, Austria, July 14–16, 2010, Part I (pp. 376–383).Google Scholar
  33. Doush, I. A., & Pontelli, E. (2013). Non-visual navigation of spreadsheets - enhancing accessibility of Microsoft Excel™. Universal Access in the Information Society, 12(2), 143–159.CrossRefGoogle Scholar
  34. Eagle, N., & (Sandy) Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.Google Scholar
  35. El-Shafei, M., Shalati, A. A., Rehayel, M., & Damaj, I. (2014). HOBOT: A customizable home management system with a surveillance robot. In IEEE 27th Canadian Conference on Electrical and Computer Engineering, CCECE 2014, Toronto, ON, Canada, May 4–7, 2014 (pp. 1–7).Google Scholar
  36. Fischer, G. (2012). Context-aware systems: The ‘right’ information, at the ‘right’ time, in the ‘right’ place, in the ‘right’ way, to the ‘right’ person. In Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI ’12 (pp. 287–294)Google Scholar
  37. Ghorbel, M., Kadouche, R., & Mokhtari, M. (2007). User & service modelling in assistive environment to enhance accessibility of dependent people. In International Conference on Information and Communication Technologies and Accessibility, ICTA’07, April, Hammamet, Tunisia.Google Scholar
  38. Grguric, A., Gil, A. M. M., Huljenic, D., Car, Z., & Podobnik, V. (2016). A survey on user interaction mechanisms for enhanced living environments (pp. 131–141). Cham: Springer International Publishing.Google Scholar
  39. Hasan, S. S., Chipara, O., Wu, Y. H., & Aksan, N. (2014). Evaluating auditory contexts and their impacts on hearing aid outcomes with mobile phones. In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (pp. 126–133)Google Scholar
  40. Hasan, S. S., Lai, F., Chipara, O., & Wu, Y. H. (2013). Audiosense: Enabling real-time evaluation of hearing aid technology in-situ. In 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 167–172). Piscataway: IEEE.Google Scholar
  41. Hinze, A., & Buchanan, G. (2005). Context-awareness in mobile tourist information systems: challenges for user interaction. In International Workshop on Context in Mobile HCI at the Conference for 7th International Conference on Human Computer Interaction with Mobile Devices and Services.Google Scholar
  42. Ivanov, R. (2012). RSNAVI: An RFID-based context-aware indoor navigation system for the blind. In Proceedings of the 13th International Conference on Computer Systems and Technologies, CompSysTech ’12 (pp. 313–320)Google Scholar
  43. Jarrah, S. I., & Doush, I. A. (2014). Context Detection Using Machine Learning to Assist Smartphone Users with Memory Impairment. Master’s thesis, Yarmouk University, Jordan.Google Scholar
  44. Kasbah, S.J., Damaj, I.W., & Haraty, R. A. (2008). Multigrid solvers in reconfigurable hardware. Journal of Computational and Applied Mathematics, 213(1), 79–94. MathSciNetzbMATHCrossRefGoogle Scholar
  45. Kbar, G., Abidi, M. H., Hammad Mian, S., Al-Daraiseh, A. A., & Mansoor, W. (2016). A university-based smart and context aware solution for people with disabilities (USCAS-PWD). Computers, 5(3), 18.CrossRefGoogle Scholar
  46. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., & Muller, P. (2007). Ambient intelligence in assisted living: Enable elderly people to handle future interfaces. In C. Stephanidis (Ed.) Universal access in human-computer interaction. Ambient interaction, lecture notes in computer science (vol. 4555, pp. 103–112). Berlin: Springer.Google Scholar
  47. Lee, H., Choi, J. S., & Elmasri, R. (2009). A classification and modeling of the quality of contextual information in smart spaces. In 2009 IEEE International Conference on Pervasive Computing and Communications (pp. 1–5).Google Scholar
  48. Leem, C. S., & Kim, B. G. (2013). Taxonomy of ubiquitous computing service for city development. Personal and Ubiquitous Computing, 17(7), 1475–1483.CrossRefGoogle Scholar
  49. Li, X., Eckert, M., Martinez, J. F., & Rubio, G. (2015). Context aware middleware architectures: Survey and challenges. Sensors, 15(8), 20570–20607.CrossRefGoogle Scholar
  50. Lin, Q., Zhang, D., Connelly, K., Ni, H., Yu, Z., & Zhou, X. (2015). Disorientation detection by mining GPS trajectories for cognitively-impaired elders. Pervasive and Mobile Computing, 19, 71–85.CrossRefGoogle Scholar
  51. Lukowicz, P., Nanda, S., Narayanan, V., Albelson, H., McGuinness, D. L., & Jordan, M. I. (2012). Qualcomm context-awareness symposium sets research agenda for context-aware smartphones. IEEE Pervasive Computing, 11(1), 76–79.CrossRefGoogle Scholar
  52. Lustrek, M., Gjoreski, H., Vega, N. G., Kozina, S., Cvetkovic, B., Mirchevska, V., Gams, M. (2015). Fall detection using location sensors and accelerometers. IEEE Pervasive Computing, 14(4), 72–79.CrossRefGoogle Scholar
  53. Manzoor, A., Truong, H. L., & Dustdar, S. (2008). On the evaluation of quality of context (pp. 140–153). Berlin: Springer.Google Scholar
  54. Marangunić, N., Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95.CrossRefGoogle Scholar
  55. Margetis, G., Antona, M., Ntoa, S., & Stephanidis, C. (2012). Towards accessibility in ambient intelligence environments. In Ambient intelligence (pp. 328–337). Berlin: Springer.CrossRefGoogle Scholar
  56. Maxhuni, A., Muñoz-Meléndez, A., Osmani, V., Perez, H., Mayora, O., & Morales, E. F. (2016). Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive and Mobile Computing, 31, 50–66.CrossRefGoogle Scholar
  57. Mehra, P. (2012). Context-aware computing: Beyond search and location-based services. IEEE Internet Computing, 16(2), 12–16.CrossRefGoogle Scholar
  58. Mirri, S., Prandi, C., Salomoni, P., Callegati, F., & Campi, A. (2014). On combining crowdsourcing, sensing and open data for an accessible smart city. In 2014 Eighth International Conference on, Next Generation Mobile Apps, Services and Technologies (NGMAST) (pp. 294–299). Piscataway: IEEE.CrossRefGoogle Scholar
  59. Morse, D. R., Armstrong, S., & Dey, A. K. (2000). The what, who, where, when, why and how of context-awareness. In CHI’00 Extended Abstracts on Human Factors in Computing Systems, CHI EA’00 (pp. 371–371)Google Scholar
  60. Mortazavi, B., Pourhomayoun, M., Ghasemzadeh, H., Jafari, R., Roberts, C. K., & Sarrafzadeh, M. (2015). Context-aware data processing to enhance quality of measurements in wireless health systems: An application to MET calculation of exergaming actions. IEEE Internet of Things Journal, 2(1), 84–93.CrossRefGoogle Scholar
  61. Nijdam, N. A., Han, S., Kevelham, B., & Magnenat-Thalmann, N. (2010). A context-aware adaptive rendering system for user-centric pervasive computing environments. In Melecon 2010, 15th IEEE Mediterranean Electrotechnical Conference (pp. 790–795)Google Scholar
  62. Novais, P., & Carneiro, D. (2016). The role of non-intrusive approaches in the development of people-aware systems. Progress in Artificial Intelligence, 5(3), 215–220.CrossRefGoogle Scholar
  63. Okoshi, T., Nozaki, H., Nakazawa, J., Tokuda, H., Ramos, J., & Dey, A. K. (2016). Towards attention-aware adaptive notification on smart phones. Pervasive and Mobile Computing, 26, 17–34. Thirteenth international conference on pervasive computing and communications (PerCom 2015).Google Scholar
  64. Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. New York: Wiley.zbMATHCrossRefGoogle Scholar
  65. Pereira, A., Nunes, N., Vieira, D., Costa, N., Fernandes, H., & Barroso, J. (2015). Blind guide: An ultrasound sensor-based body area network for guiding blind people. Procedia Computer Science, 67, 403–408. Proceedings of the 6th international conference on software development and technologies for enhancing accessibility and fighting info-exclusion.Google Scholar
  66. Ramos, J., Oliveira, T., Satoh, K., Neves, J., & Novais, P. (2018). Cognitive assistants—an analysis and future trends based on speculative default reasoning. Applied Sciences, 8(742), 1–23.Google Scholar
  67. Rana, R., Hume, M., Reilly, J., Jurdak, R., & Soar, J. (2016). Opportunistic and context-aware affect sensing on smartphones. IEEE Pervasive Computing, 15(2), 60–69.CrossRefGoogle Scholar
  68. Rantanen, V., Vanhala, T., Tuisku, O., Niemenlehto, P. H., Verho, J., Surakka, V., Juhola, M., & Lekkala, J. (2011). A wearable, wireless gaze tracker with integrated selection command source for human-computer interaction. IEEE Transactions on Information Technology in Biomedicine, 15(5), 795–801.CrossRefGoogle Scholar
  69. Sanchez, L., Lanza, J., Olsen, R., Bauer, M., & Girod-Genet, M. (2006). A generic context management framework for personal networking environments. In 3rd Annual International Conference on Mobile and Ubiquitous Systems - Workshops, 2006 (pp. 1–8).Google Scholar
  70. Santoro, C., Paterno, F., Ricci, G., & Leporini, B. (2007). A multimodal mobile museum guide for all. In Mobile Interaction with the Real World (MIRW 2007). pp. 21–25.Google Scholar
  71. Santos, F., Almeida, A., Martins, C., Gonçalves, R., & Martins, J. (2017). Using POI functionality and accessibility levels for delivering personalized tourism recommendations. Computers, Environment and Urban Systems.
  72. Saunier, J., & Balbo, F. (2009). Regulated multi-party communications and context awareness through the environment. Multiagent and Grid Systems, 5(1), 75.zbMATHCrossRefGoogle Scholar
  73. Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. In Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications, WMCSA ’94 (pp. 85–90).Google Scholar
  74. Shin, D. H. (2009). Ubiquitous city: Urban technologies, urban infrastructure and urban informatics. Journal of Information Science, 35(5), 515–526.CrossRefGoogle Scholar
  75. Silva, J., Rosa, J., Barbosa, J., Barbosa, D. N. F., & Palazzo, L. A. M. (2009). Content distribution in trial-aware environments. In Proceedings of the XV Brazilian Symposium on multimedia and the web, WebMedia ’09 (pp. 15:1–15:8). New York: ACM.Google Scholar
  76. Tavares, J., Barbosa, J., Cardoso, I., Costa, C., Yamin, A., & Real, R. (2016). Hefestos: An intelligent system applied to ubiquitous accessibility. Universal Access in the Information Society, 15(4), 589–607.CrossRefGoogle Scholar
  77. Truong, H. L., & Dustdar, S. (2009). A survey on context-aware web service systems. International Journal of Web Information Systems, 5(1), 5–31.CrossRefGoogle Scholar
  78. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, E. (2012). Context-aware recommender systems for learning: A survey and future challenges. IEEE Transactions on Learning Technologies, 5(4), 318–335.CrossRefGoogle Scholar
  79. von Ahn, L., Ginosar, S., Kedia, M., Liu, R., & Blum, M. (2006). Improving accessibility of the web with a computer game. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’06 (pp. 79–82)Google Scholar
  80. Wagner, A., Barbosa, J. L. V., & Barbosa, D. N. F. (2014). A model for profile management applied to ubiquitous learning environments. Expert Systems with Applications, 41(4, Part 2), 2023–2034.Google Scholar
  81. Weiser, M. (1999). The computer for the 21st century. SIGMOBILE Mobile Computing and Communications Review, 3(3), 3–11. CrossRefGoogle Scholar
  82. World Health Organization (WHO). (2011). Retrieved 30 October 2017,
  83. Zhan, K., Faux, S., & Ramos, F. (2015). Multi-scale conditional random fields for first-person activity recognition on elders and disabled patients. Pervasive and Mobile Computing, 16, 251–267. Selected papers from the twelfth annual IEEE international conference on pervasive computing and communications (PerCom 2014).Google Scholar
  84. Zhang, D., Huang, H., Lai, C. F., Liang, X., Zou, Q., & Guo, M. (2013). Survey on context-awareness in ubiquitous media. Multimedia Tools and Applications, 67(1), 179–211.CrossRefGoogle Scholar
  85. Zhu, C., & Sheng, W. (2011). Wearable sensor-based hand gesture and daily activity recognition for robot-assisted living. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(3), 569–573.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Iyad Abu Doush
    • 1
    • 2
    Email author
  • Issam Damaj
    • 3
  • Mohammed Azmi Al-Betar
    • 4
  • Mohammed A. Awadallah
    • 5
  • Ra’ed M. Al-khatib
    • 6
  • Alaa Eddin Alchalabi
    • 7
  • Asaju L. Bolaji
    • 8
  1. 1.Department of Computer Science and Information SystemsAmerican University of KuwaitSalmiyaKuwait
  2. 2.Computer Sciences DepartmentYarmouk University IrbidIrbidJordan
  3. 3.Electrical and Computer Engineering DepartmentRafik Hariri UniversityMechrefLebanon
  4. 4.Department of Information TechnologyAl-Huson University College, Al-Balqa Applied UniversityAl-HusonJordan
  5. 5.Department of Computer ScienceAl-Aqsa UniversityGazaPalestine
  6. 6.Department of Computer ScienceYarmouk UniversityIrbidJordan
  7. 7.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  8. 8.Department of Computer ScienceUniversity of IlorinIlorinNigeria

Personalised recommendations