Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science

  • Mohamed A. Mohamed
  • Kamel A. Abd-Elsalam
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Plant genetic transformation is one of the key technologies for crop improvement in addition to emerging approaches for producing recombinant proteins in plants. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to exogenous biomolecule delivery. Until now, scientists usually transfer the interested genes into plants by Agrobacterium sp., application of some chemicals, and physical techniques (electroporation, microprojectile bombardment, etc.). Recently, nanoparticles including magnetic nanoparticles started to be the most promising materials for any biomolecule delivery including nucleic acids, owing to their ability to traverse plant cell walls without external force and highly tunable physicochemical properties for diverse cargo conjugation and broad host range applicability. In this chapter, we have discussed using nanotechnology through nucleic acid conjugated magnetic nanoparticles with their current status and future prospects in the development of gene transfer methods in plants. We have also discussed the mechanism of their entry and some recommendations for their future perspectives to improve efficacy, stability, and accuracy making it less time-consuming.


Magnetic nanoparticles Magnetofection Gene delivery, plant protection 



The first author would like to acknowledge Dr. Suzan Eid for her contentious support.


  1. Agotegaray M et al (2016) Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution. J Biomater Sci Polym Ed 27(11):1069–1085CrossRefGoogle Scholar
  2. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Pesudo LQ, Rauscher H (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476CrossRefGoogle Scholar
  3. Arts JH, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K (2014) A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol 70(2):492–506CrossRefGoogle Scholar
  4. Berestovsky GN, Ternovsky VI, Kataev AA (2001) Through pore diameter in the cell wall of Chara Corallina. J Exp Bot 52(359):1173–1177CrossRefGoogle Scholar
  5. Chouly C et al (1996) Development of superparamagnetic nanoparticles for mri: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255CrossRefGoogle Scholar
  6. Cordero T, Mohamed MA, López-Moya JJ, Daròs JA (2017) A recombinant potato virus y infectious clone tagged with the rosea1 visual marker (pvy-ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Front Microbiol 8:611CrossRefGoogle Scholar
  7. Deng XY, Wei ZM, An H (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11(2):156–160CrossRefGoogle Scholar
  8. Dyab AK, Mohamed MA, Meligi NM, Mohamed SK (2018) Encapsulation of erythromycin and bacitracin antibiotics into natural sporopollenin microcapsules: antibacterial, cytotoxicity, in vitro and in vivo release studies for enhanced bioavailability. RSC Adv 8(58):33432–33444CrossRefGoogle Scholar
  9. Eichert T, Andreas K, Ulrike S, Heiner EG (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160CrossRefGoogle Scholar
  10. Fleischer A, O’Neill MA, Ehwald A (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838CrossRefGoogle Scholar
  11. Gubin SP, Yurii AK, Khomutov GB, Gleb YY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489–520CrossRefGoogle Scholar
  12. Handford CE, Dean M, Spence M, Henchion M, Elliott CT, Campbell K (2015) Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57:24–34CrossRefGoogle Scholar
  13. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for mri, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176CrossRefGoogle Scholar
  14. Jia G et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene., 23 Jan 2019
  15. Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13(3):1059–1064CrossRefGoogle Scholar
  16. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235CrossRefGoogle Scholar
  17. Knell M (2010) Nanotechnology and the sixth technological revolution. In: Nanotechnology and the challenges of equity, equality and development. Springer Netherlands, Dordrecht, pp 127–143CrossRefGoogle Scholar
  18. Lévy R, Umbreen S, Yann C, Violaine S (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1:4889CrossRefGoogle Scholar
  19. Li C, Guo T, Zhou D, Hu Y, Zhou H, Wang S, Chen J, Zhang Z (2011) A novel glutathione modified chitosan conjugate for efficient gene delivery. J Control Release 154(2):177–188CrossRefGoogle Scholar
  20. Liu J, Wang FH, Wang LL, Xiao SY, Tong CY, Tang DY, Liu XM (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent South Univ Technol 15(6):768–773CrossRefGoogle Scholar
  21. Ma X, Jane G, Yang D, Andrei K (2010) Interactions between engineered nanoparticles (enps) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061CrossRefGoogle Scholar
  22. McKnight TE, Melechko AV, Hensley DK, Mann DG, Griffin GD, Simpson ML (2004) Tracking gene expression after DNA delivery using spatially indexed nanofiber arrays. Nano Lett 4(7):1213–1219CrossRefGoogle Scholar
  23. McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14: 551–556Google Scholar
  24. Mishra S, Singh HB (2015) Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana. Microbiol Res 172:16–18CrossRefGoogle Scholar
  25. Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Plant microbes symbiosis: applied facets. Springer India, New Delhi, pp 111–125Google Scholar
  26. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976CrossRefGoogle Scholar
  27. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  28. Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217CrossRefGoogle Scholar
  29. Niemeyer A, Christof M (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem 40(22):4128–4158CrossRefGoogle Scholar
  30. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche JM, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504CrossRefGoogle Scholar
  31. Rai M, Deshmukh S, Gade A, Abd Elsalam K (2012) Strategic nanoparticle-mediated gene transfer in plants and animals-a novel approach. Curr Nanosci 8:170–179CrossRefGoogle Scholar
  32. Reid RJ, Zhang Q, Sekimoto H (2001) Influence of membrane surface charge on nutrient uptake by plants. In: Plant nutrition. Springer Netherlands, Dordrecht, pp 198–199CrossRefGoogle Scholar
  33. Rossi M, Cubadda F, Dini L, Terranova ML, Aureli F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol 40(2):127–148CrossRefGoogle Scholar
  34. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5(1):493–499CrossRefGoogle Scholar
  35. Silva LCD, Marco AO, Aristéa AA, João Marco DA (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175(1–4):241–256CrossRefGoogle Scholar
  36. Subhankar B, Wolfgang K (2009) Supermagnetism. J Phys D Appl Phys 42(1):13001CrossRefGoogle Scholar
  37. Tokmachev AM, Averyanov DV, Parfenov OE, Taldenkov AN, Karateev IA, Sokolov IS, Kondratev OA, Storchak VG (2018) Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun 9(1):1672CrossRefGoogle Scholar
  38. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042CrossRefGoogle Scholar
  39. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1):69–78CrossRefGoogle Scholar
  40. WHO (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. WHO., 24 Jan 2019
  41. Wiesman Z, Dom NB, Sharvit E, Grinberg S, Linder C, Heldman E, Zaccai M (2007) Novel cationic vesicle platform derived from vernonia oil for efficient delivery of dna through plant cuticle membranes. J Biotechnol 130(1):85–94CrossRefGoogle Scholar
  42. Wu W, Quanguo H, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415CrossRefGoogle Scholar
  43. Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884CrossRefGoogle Scholar
  44. Zhang R, Meng Z, Abid MA, Zhao X (2019) Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Transgenic cotton. Humana Press, New York, pp 47–54CrossRefGoogle Scholar
  45. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed A. Mohamed
    • 1
  • Kamel A. Abd-Elsalam
    • 1
    • 2
  1. 1.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  2. 2.Unit of Excellence in Nano-Molecular Plant Pathology, Plant Pathology Research InstituteGizaEgypt

Personalised recommendations