Advertisement

Antimicrobial Activity of Magnetic Nanostructures

  • Poonam Nehra
  • R. P. Chauhan
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Magnetic nanostructures have attracted considerable attention due to its properties such as coercivity, biocompatibility, high magnetic susceptibility, morphology, and other surface properties. Due to the unique characteristics of magnetic nanostructures, they have a wide range of domestic and commercial applications in various domains like biology, agriculture, environment, medicine, physics, electronics, pharmaceutical, industry, and so on. Magnetic nanostructures are preferred in biological applications because of their potential to function at the cellular and molecular levels and minimal harmful effects compared to their bulk material form. Microbial infection is a major concern in day-to-day life and is also impacting numerous sectors like water treatment, food packaging, cloth industry, marine transport, and medicine. The current chapter focuses on magnetic nanostructures showing antimicrobial activity, their antimicrobial mechanism, factors affecting the antimicrobial activity, benefits and limitations of magnetic nanoparticles as an antimicrobial agent, and methods used for testing antimicrobial activity.

Keywords

Magnetic nanoparticles Antimicrobial property Microbial resistance Antimicrobial action 

References

  1. Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL (2015) Effect of silver nanoparticle geometry on methicillin-susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26(7):215PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alahmadi NS, Betts JW, Cheng F, Francesconi MG, Kelly SM, Kornherr A, Priora TJ, Wadhawan JD (2017) Synthesis and antibacterial effects of cobalt– cellulose magnetic nanocomposites. RSC Adv 7:20020CrossRefGoogle Scholar
  3. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1185PubMedCrossRefPubMedCentralGoogle Scholar
  4. Al-Omair MA, Khalaf MM, Touny AH, Elsawy H, Saleh MM (2018) Antimicrobial activities of mesoporous nickel phosphate synthesized with low-temperature method. Microchem J 145:113–118CrossRefGoogle Scholar
  5. Anaya NM, Solomon F, Oyanedel-Craver V (2016) Effects of dysprosium oxide nanoparticles on Escherichia coli. Environ Sci Nano 3(1):67–73CrossRefGoogle Scholar
  6. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813PubMedPubMedCentralCrossRefGoogle Scholar
  7. Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int 24(4):321–328CrossRefGoogle Scholar
  8. Aruguete DM, Bojeong K, Michael FH, Yanjun M, Yingwen C, Andy H, Jie L, Amy P (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci: Processes Impacts 15:93–102Google Scholar
  9. Ashour AH, El-Batal AI, Maksoud MIAA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 40:141–151CrossRefGoogle Scholar
  10. Bronshteint I, Aulova S, Juzeniene A, Iani V, Ma LW, Smith KM, Malik Z, Moan J, Ehrenberg B (2006) In vitro and in vivo photosensitization by protoporphyrins possessing different lipophilicities and vertical localization in the membrane. Photochem Photobiol 82:1319–1325PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao H, Meng F, Liu X (2016) Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. J Vac Sci Technol A 34(4):04C102CrossRefGoogle Scholar
  13. Chaudhary RG, Tanna JA, Gandhare NV, Rai AR, Juneja HD (2015) Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv Mater Let 6(11):990–998CrossRefGoogle Scholar
  14. Chen SF, Li JP, Qian K, Xu WP, Lu Y, Huang WX, Yu SH (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255CrossRefGoogle Scholar
  15. Dědková K, Kuzníková Ľ, Pavelek L, Matějová K, Kupková J, Čech Barabaszová K, Váňa R, Burda J, Vlček J, Cvejn D, Kukutschová J (2017) Daylight induced antibacterial activity of gadolinium oxide, samarium oxide and erbium oxide nanoparticles and their aquatic toxicity. Mater Chem Phys 197:226–235CrossRefGoogle Scholar
  16. Dighore N, Jadhav S, Anandgaonker P, Gaikwad S, Rajbho A (2017) Molybdenum oxide nanoparticles as antimicrobial agents. J Clust Sci 28(1):109–118CrossRefGoogle Scholar
  17. Fakhri A, Nejad PA (2016) Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J Photochem Photobiol B 159:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fazio E, Santoro M, Lentini G, Franco D, Guglielmino SPP, Neri F (2016) Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity. Colloids Surf A Physicochem Eng Asp 490:98–103CrossRefGoogle Scholar
  19. Giannousi K, Menelaou M, Arvanitidis J, Angelakeris M, Pantazaki A, Dendrinou-Samara C (2015) Hetero-nanocomposites of magnetic and antifungal nanoparticles as a platform for magnetomechanical stress induction in Saccharomyces cerevisiae. J Mater Chem B 3(26):5341–5351CrossRefGoogle Scholar
  20. Gingasu D, Mindru I, Patron L, Ianculescu A, Vasile E, Marinescu G, Preda S, Diamandescu L, Oprea O, Popa M, Saviuc C, Chifiriuc MC (2018) Synthesis and characterization of chitosan-coated cobalt ferrite nanoparticles and their antimicrobial activity. J Inorg Organomet Polym Mater 28(5):1932–1941CrossRefGoogle Scholar
  21. Gopinath K, Chinnadurai M, Devi NP, Bhakyaraj K, Kumaraguru S, Baranisri T, Sudha A, Zeeshan M, Arumugam A, Govindarajan M, Alharbi NS, Kadaikunnan S, Benelli G (2016) One-pot synthesis of dysprosium oxide nano-sheets: antimicrobial potential and cyotoxicity on a549 lung cancer cells. J Clust Sci 28(1):621–635CrossRefGoogle Scholar
  22. Graves JL Jr, Thomas M, Ewunkem JA (2017) Antimicrobial nanomaterials: why evolution matters. Nanomaterials 7:283PubMedCentralCrossRefGoogle Scholar
  23. Guo BL, Han P, Guo LC, Cao YQ, Li AD, Kong JZ, Zhai HF, Wu D (2015) The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett 10:336PubMedCentralCrossRefGoogle Scholar
  24. Hassan AA, Oraby NH, El-Dahshan EM, Ali MA (2015) Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. Eur J Acad Essays 2(6):20–31Google Scholar
  25. Hatamie S, Nouri M, Karandikar SK, Kulkarni A, Dhole SD, Phase DM, Kale SN (2012) Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater Sci Eng C 32:92–97CrossRefGoogle Scholar
  26. Hathout AS, Aljawish A, Sabry BA, El-Nekeety AA, Roby MH, Deraz NM, Aly SE, Abdel-Wahhab MA (2017) Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J Appl Pharm Sci 7(1):86–92CrossRefGoogle Scholar
  27. Hausdorfer J, Sompek E, Allerberger F, Dierich MP, Rüsch-Gerdes S (1998) E-test for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2:751–755PubMedPubMedCentralGoogle Scholar
  28. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. NanoBiotechnology 14(1):54CrossRefGoogle Scholar
  29. Hong X, Wen J, Xiong X, Hu Y (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 23(5):4489–4497PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) A review on nano-antimicrobials: metal nanoparticles, methods, and mechanisms. Curr Drug Metab 18(0):1–9Google Scholar
  31. Hsueh YH, Tsai PH, Lin KS, Ke WJ, Chiang CL (2017) Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains. J Nanobiotechnol 15:77CrossRefGoogle Scholar
  32. Huang HL, Chang YY, Chen HJ, Chou YK, Lai CH, Chen MYC (2014) Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. J Vac Sci Technol A 32(2):02B117CrossRefGoogle Scholar
  33. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ibrahem EJ, Thalij KM, Badawy AS (2017) Antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. Biotechnol J Int 18(1):1–7CrossRefGoogle Scholar
  35. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755PubMedCrossRefPubMedCentralGoogle Scholar
  37. Khadar YAS, Balamurugan A, Devarajan VP, Subramanian R (2017) Hydrothermal synthesis of gadolinium (Gd) doped cerium oxide (CeO2) nanoparticles: characterization and antibacterial activity. Orient J Chem 33(5):2405–2411CrossRefGoogle Scholar
  38. Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355PubMedCrossRefPubMedCentralGoogle Scholar
  39. Krishnamoorthy K, Premanathan M, Veerapandian M, Kim SJ (2014) Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria. Nanotechnology 25(31):315101PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kuang Y, He X, Zhang Z, Li Y, Zhang H, Ma Y, Wu Z, Chai Z (2011) Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol 11:4103–4108PubMedCrossRefPubMedCentralGoogle Scholar
  41. Leroueil PR, Hong S, Mecke A, Baker JR Jr, Orr BG, Banaszak Holl MM (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342PubMedPubMedCentralCrossRefGoogle Scholar
  42. Li ST, Qiao XL, Chen JG, Wu CL, Mei B (2005) The investigation of antibacterial characteristics of magnesium oxide and it’s nano-composite materials. J Funct Mater 11:1651–1654Google Scholar
  43. Limban C, Missir AV, Caproiu MT, Grumezescu AM, Chifiriuc MC, Bleotu C, Marutescu L, Papacocea M, Nuta DC (2018) Novel hybrid formulations based on thiourea derivatives and core@shell Fe3O4@C18 nanostructures for the development of antifungal strategies. Nanomaterials 8:47PubMedCentralCrossRefGoogle Scholar
  44. Linlin W, Chen H, Longquan S (2018) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249Google Scholar
  45. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lopes E, Piçarra S, Almeida PL, de Lencastre H, Aires-de-Sousa M (2018) Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens. J Med Microbiol 67:1042–1046PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa JA, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL (2016) The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm–p5. Int J Nanomedicine 11:3849PubMedPubMedCentralCrossRefGoogle Scholar
  49. Magaldi S, Mata-Essayag S, De Capriles CH, Perez C, Colella MT, Olaizola C, Ontiveros Y (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45PubMedCrossRefPubMedCentralGoogle Scholar
  50. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715CrossRefGoogle Scholar
  51. Masoumbaigi H, Rezaee A, Hosseini H, Hashemi S (2015) Water disinfection by zinc oxide nanoparticle prepared with solution combustion method. Desalin Water Treat 56:2376–2381CrossRefGoogle Scholar
  52. Meng L, Wu Y, Pan K, Zhu Y, Li X, Wei W, Liu X (2019) Polymeric nanoparticles-based multi-functional coatings on NiTi alloy with nickel ion release control, cytocompatibility, and antibacterial performance. New J Chem 43(3):1551–1561CrossRefGoogle Scholar
  53. Mirhosseini M, Afzali M (2016) Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 68:208–215CrossRefGoogle Scholar
  54. Mirhosseini M, Hafshejani BK, Dashtestani F, Hakimian F, Haghirosadat BF (2018) Antibacterial activity of nickel and nickel hydroxide nanoparticles against multidrug resistance K. pneumonia and E. coli isolated urinary tract. Nanomed J 5(1):19–26Google Scholar
  55. Nehra P, Chauhan RP, Garg N, Verma K (2018) Antibacterial and antifungal activity of chitosan-coated iron oxide nanoparticles. Br J Biomed Sci 5(1):13–18CrossRefGoogle Scholar
  56. Nguyen NYT, Grelling N, Wetteland CL, Rosario R, Liu H (2018) Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep 8(1):16260PubMedPubMedCentralCrossRefGoogle Scholar
  57. Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R (2017) Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA–13. Sci Rep 7(1):4610PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nijs A, Cartuyvels R, Mewis A, Peeters V, Rummens JL, Magerman K (2003) Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J Clin Microbiol 41:3627–3630PubMedPubMedCentralCrossRefGoogle Scholar
  59. Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288:543–553CrossRefGoogle Scholar
  60. Pandian CJ, Palanivel R, Dhanasekaran S (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanopart 1:1–13CrossRefGoogle Scholar
  61. Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292PubMedCrossRefPubMedCentralGoogle Scholar
  62. Prabhuswamy Spoorthy H, Satish S, Dharamappa Rekha N (2017) Biosynthesis of nickel nanoparticles from bacteria and evaluation of their biological activity. J Pharm Res 11(5):459–463Google Scholar
  63. Prasannakumar JB, Vidya YS, Anantharaju KS, Ramgopal G, Nagabhushana H, Sharma SC, Prasad BD, Prashantha SC, Basavaraj RB, Rajanaik H, Lingaraju K, Prabhakara KR, Nagaswarupa HP (2015) Bio-mediated route for the synthesis of shape tunable Y2O3: Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc 151:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  64. Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, Kolář M, Tománková K, Zbořil R (2011) The targeted antibacterial and antifungal properties of the magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32(21):4704–4713PubMedCrossRefPubMedCentralGoogle Scholar
  65. Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int J Eng Sci Technol 2:202–208CrossRefGoogle Scholar
  66. Saldanha CA, Garcia MP, Iocca DC, Rebelo LG, Souza ACO, Bocca AL, Santos MDFMA, Morais PC, Azevedo RB (2016) Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis. PLoS Negl Trop Dis 10(6):e0004754PubMedPubMedCentralCrossRefGoogle Scholar
  67. Samiei M, Farjami A, Dizaj SM, Lotfipour F (2016) Nanoparticles for antimicrobial purposes in Endodontics: a systematic review of in vitro studies. Mater Sci Eng C 58:1269–1278CrossRefGoogle Scholar
  68. Seddighi NS, Salari S, Izadi AR (2017) Evaluation of the antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnol 11(7):883–888CrossRefGoogle Scholar
  69. Seil TS, Websters TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781Google Scholar
  70. Selvaraju C, Karthick R, Veerasubam R (2018) The modification of structural, optical and antibacterial activity properties of rare earth Gadolinium-Doped ZnO nanoparticles prepared by co-precipitation method. J Inorg Organomet Polym 1:1–7Google Scholar
  71. Shrifian-Esfahni A, Salehi MT, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. Chemik 69(1):19–32Google Scholar
  72. Singh S, Patel P, Jaiswal S, Prabhune AA, Ramana CV, Prasad BLV (2009) A direct method for the preparation of glycolipid- metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J Chem 33:646–652CrossRefGoogle Scholar
  73. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7(3):219–242CrossRefGoogle Scholar
  74. Slavin YN, Jason Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65CrossRefGoogle Scholar
  75. Spacciapoli P, Buxton D, Rothstein D, Friden P (2001) Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodontal Res 36:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  76. Spoorthy HP, Rekha ND, Satish S (2017) Biosynthesis nickel nanoparticle by microorganism and their biological activity. Der Pharma Chemica 9(13):80–84Google Scholar
  77. Tang ZX, Lv BF (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31(3):591–601CrossRefGoogle Scholar
  78. Vahedi M, Hosseini-Jazani N, Yousefi S, Maryam Ghahremani M (2017) Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran J Microbiol 9(3):160–168PubMedPubMedCentralGoogle Scholar
  79. Valgas C, De Souza SM, Smânia EFA, Jret AS (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380CrossRefGoogle Scholar
  80. Varaprasad T, Govindh B, Rao BV (2017) Green synthesized cobalt nanoparticles using Asparagus racemosus root extract & evaluation of antibacterial activity. Int Chem Tech 10(9):339–345Google Scholar
  81. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249CrossRefGoogle Scholar
  82. White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918PubMedPubMedCentralCrossRefGoogle Scholar
  83. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 23:2121–2134CrossRefGoogle Scholar
  84. Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427PubMedCrossRefPubMedCentralGoogle Scholar
  85. Zielinska-Jurek A, Wei Z, Wysocka I, Szweda P, Kowalska E (2015) The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl Surf Sci 353:317–325CrossRefGoogle Scholar
  86. Žalnėravičius R, Paškevičius A, Kurtinaitiene M, Jagminas A (2018) Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles. J Nanopart Res 18(10):300CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Poonam Nehra
    • 1
  • R. P. Chauhan
    • 2
  1. 1.School of Biomedical EngineeringNational Institute of TechnologyKurukshetraIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations