Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health

  • Khaled K. Kasem
  • Manal Mostafa
  • Kamel A. Abd-Elsalam
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Soil-based ecosystems have a vital role in preserving soil status, ecosystem functions, and crop productivity. Soil microorganisms, soil fertility, and soil health are confronted by new natural stressors that include iron-based nanomaterials. Although these developing pollutants are being released into most ecosystems, including agricultural fields, their potential influences on the soil and its characteristics remain to be explored. To investigate the outcomes of magnetic nanoparticles on soil microbial diversity, the researchers carried out a comprehensive literature search. This chapter defines how to synthesize magnetic nanomaterials and how to discover the possible threats posed by the positive and negative results of iron-based nanomaterials (IO-NMs) on the soil ecosystem. Also discussed are the influences of nano-iron on microbial activities, soil productivity, soil health, and arsenic remediation. IO-NMs are a disturbing overview of the emerging contaminants of terrestrial ecosystems. Their impacts on soil characteristics, besides their effects on microbial populations and abundant key functional associations, are of specific interest for environmental hazard assessment. Our discussion recommends that the toxicity of IO-NMs to functions of the soil must be considered before recommending their use in prospective research in agro-ecosystems.


Nanoparticles Humic acid Iron Soil microbes Soil health 


  1. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1-3):38–49CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andrew B, Cundy LH, Raymond LD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1-3):42–51CrossRefGoogle Scholar
  3. Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banerjee J, Kole C (2016) Chapter 1. Plant nanotechnology: an overview on concepts, strategies, and tools. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, Cham, pp 1–14Google Scholar
  5. Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IP (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1-3):73–80CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhalerao TS (2014) A review: applications of iron nanomaterials in bioremediation and in detection of pesticide contamination. Int J Nanopart 7(1):73–80CrossRefGoogle Scholar
  7. Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911CrossRefGoogle Scholar
  8. Bumb A, Brechbiel MW, Choyke PL, Fugger L, Eggeman A, Prabhakaran D, Hutchinson J, Dobson PJ (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19(33):335601CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burke DV, Zhu S, Pablico-Lansigan MP (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173CrossRefGoogle Scholar
  10. Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10CrossRefGoogle Scholar
  11. Cao J, Feng Y, Lin X, Wang J, Xie X (2017) Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J Soil Sediment 17:841–851CrossRefGoogle Scholar
  12. Cao Y, Zhang S, Zhong Q, Wang G, Xu X, Li T, Wang L, Jia Y, Li Y (2018) Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol Environ Saf 162:464–473CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E (2016) Impact of nanoscale zero-valent iron on bacteria is growth phase dependent. Chemosphere 144:352–359CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164–181CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen HD, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  16. Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. Trends Anal Chem 30(7):1095–1108CrossRefGoogle Scholar
  17. Cheng W, Xu J, Wang YJ, Wu F, Xu X, Li JJ (2015) Dispersion–precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. J Colloid Interface Sci 445:93–101CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng W, Xu XY, Wu F, Li JJ (2016a) Synthesis of cavity–containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Mater Lett 164:210–212CrossRefGoogle Scholar
  19. Cheng M, Zeng G, Huang D, Cui L, Xu P, Zhang C, Liu Y (2016b) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598CrossRefGoogle Scholar
  20. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRefPubMedPubMedCentralGoogle Scholar
  21. De Jaeger N, Demeye H, Findy R, Sneyer R, Vanderdeelen J, Van der Meeren P, Laethem M (1991) Particle sizing by photon correlation spectroscopy part I: monodisperse latices: influence of scattering angle and concentration of dispersed material. Part Part Syst Char 8:179–186CrossRefGoogle Scholar
  22. Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ding Q, Cheng G, Wang Y, Zhuang D (2017) Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci Total Environ 578:577–585CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ding H, Song WB, Zhang ZM (2011) Recent advances in research on iron nutrition of peanut. J Peanut Sci 40:39–43Google Scholar
  25. Dung TT, Danh TM, Hoa LTM, Chien DM, Duc NH (2009) Structural and magnetic properties of starch–coated magnetite nanoparticles. J Exp Nanosci 4:259–267CrossRefGoogle Scholar
  26. Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefPubMedPubMedCentralGoogle Scholar
  27. El-Temsah YS, Oughton DH, Joner EJ (2014) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368:189–200CrossRefGoogle Scholar
  28. Etemadi N, Sepahy AA, Mohebali G, Yazdian F, Omidi M (2018) Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int J Biol Macromol 120:1801–1809CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero–valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808CrossRefPubMedPubMedCentralGoogle Scholar
  30. FAO (2008) An international technical workshop Investing in sustainable crop intensification: the case for improving soil health. Integrated Crop Management FAO Rome, 22–24 JulyGoogle Scholar
  31. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilizations, functionatization, characterization and application. J Iran Chem Soc 7:1–37CrossRefGoogle Scholar
  32. Flury B, Eggenberger U, Mäder U (2009a) First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater. Appl Geochem 24:687–696CrossRefGoogle Scholar
  33. Flury B, Frommer J, Eggenberger U, Mäder U, Nachtegaal M, Kretzschmar R (2009b) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol 43:6786–6792CrossRefPubMedPubMedCentralGoogle Scholar
  34. Foner S (1959) Versatile and sensitive vibrating-sample magnetometer. Rev Sci Instrum 30:548CrossRefGoogle Scholar
  35. Galdames A, Mendoza A, Orueta M, De Soto García IS, Sánchez M, Virto I, Vilas JL (2017) Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resour Effic Technol 3:166–176CrossRefGoogle Scholar
  36. Ghrair AM, Ingwersen J, Streck T (2010) Immobilization of heavy metals in soils amended by nanoparticulate zeolitic tuff: sorption–desorption of cadmium. J Plant Nutr Soil Sci 173:852–860CrossRefGoogle Scholar
  37. Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang W (2003) Nanotechnology takes root. Civ Eng 73(5):64–69Google Scholar
  38. Green M, Brjen PO (2001) The preparation of organically functionalised chromium and nickel nanoparticles. Chem Commun 19:1912–1913CrossRefGoogle Scholar
  39. Grieger KD, Fjordboge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gupta A, Yunus M, Sankararamakrishnan N (2012) Zero-valent iron encapsulated chitosan nanospheres – a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 86:150–155CrossRefPubMedPubMedCentralGoogle Scholar
  41. Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22(11):8094–8123CrossRefGoogle Scholar
  42. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34CrossRefGoogle Scholar
  43. He SY, Feng YZ, Gu N, Zhang Y, Lin XG (2011a) The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environ Pollut 159:3468–3473CrossRefPubMedPubMedCentralGoogle Scholar
  44. He SY, Feng YZ, Ren HX, Zhang Y, Gu N, Lin XG (2011b) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soil Sediment 11:1408–1417CrossRefGoogle Scholar
  45. He SY, Feng YZ, Ni J, Sun YF, Xue LH, Feng YF, Yu YL, Lin XG, Yang LZ (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hu WB, Peng C, Luo WJ, Lv M, Li XM, Li D, Huang Q, Fan CH (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2017) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ 574:1599–1610CrossRefPubMedPubMedCentralGoogle Scholar
  48. Huang D, Zeng G, Feng C, Hu S, Jiang X, Tang L, Su F, Zhang Y, Zeng W, Liu H (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951CrossRefPubMedPubMedCentralGoogle Scholar
  49. Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501CrossRefPubMedPubMedCentralGoogle Scholar
  50. Illés E, Tombácz E (2003) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf A Physicochem Eng Asp 203(1–3):99–109CrossRefGoogle Scholar
  51. Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312CrossRefGoogle Scholar
  53. Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70(3):418–425CrossRefPubMedPubMedCentralGoogle Scholar
  54. Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang J, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25(5):749–760CrossRefGoogle Scholar
  55. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Change Biol 11:575–587CrossRefGoogle Scholar
  58. Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555–4560CrossRefPubMedPubMedCentralGoogle Scholar
  59. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energ Environ Sci 5:8075–8109CrossRefGoogle Scholar
  60. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  61. Kim JS, Shea PJ, Yang JE, Kim JE (2007) Halide salts accelerate degradation of high explosives by zero-valent iron. Environ Pollut 147:634–641CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Tilton RD (2010) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Sci Technol 45:5253–5259CrossRefGoogle Scholar
  63. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra SY, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27(9):1825–1851CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152CrossRefPubMedPubMedCentralGoogle Scholar
  65. Koesnarpadi S, Santosa SJ, Siswanta D, Rusdiarso B (2017) Humic acid coated Fe3O4 nanoparticle for phenol sorption. Indones J Chem 17(2):274–283CrossRefGoogle Scholar
  66. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefPubMedPubMedCentralGoogle Scholar
  67. Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lei C, Sun Y, Tsang DCW, Lin D (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRefPubMedPubMedCentralGoogle Scholar
  71. Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122CrossRefGoogle Scholar
  72. Li X, Gui X, Rui Y, Ji W, Nhan L, Yu Z, Penga S (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180CrossRefPubMedPubMedCentralGoogle Scholar
  73. Li R, Li Q, Gao S, Shang JK (2012a) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem Eng J 185–186:127–135CrossRefGoogle Scholar
  74. Li YC, Yu S, Strong J, Wang HL (2012b) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? J Soil Sediment 12:683–693CrossRefGoogle Scholar
  75. Limbach LK, Grass RN, Stark WJ (2009) Physico-chemical differences between particle- and molecule-derived toxicity: can we make inherently safe nanoparticles? Chimia 63:38–43CrossRefGoogle Scholar
  76. Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long–term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–1545CrossRefPubMedPubMedCentralGoogle Scholar
  78. Liu JF, Zhao ZS, Hang GB (2008) Coating Fe3O4 magnetic nanoparticle with humic acids for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954CrossRefPubMedPubMedCentralGoogle Scholar
  79. Liu RQ, Zhao DY (2007a) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41:2491–2502CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu RQ, Zhao DY (2007b) In situ immobilization of Cu (II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876CrossRefPubMedPubMedCentralGoogle Scholar
  81. Liu SB, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang YH, Chen Y (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902CrossRefPubMedPubMedCentralGoogle Scholar
  82. Liu Y, Majetich SA, Tiltin RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ludwig RD, Su C, Lee TR, Wilkin RT, Acree SD, Ross RR, Keele A (2007) In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulphate and sodium dithionite: a field investigation. J Environ Sci Technol 41(15):5299–5305CrossRefGoogle Scholar
  85. Mahmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal: a review. Environ Sci Pollut Res 20:1239–1260CrossRefGoogle Scholar
  86. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011) Assessing the in vitro and in vivo toxicity of super paramagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338CrossRefPubMedPubMedCentralGoogle Scholar
  87. Mak MSH, Rao P, Lo IMC (2009) Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res 43:4296–4304CrossRefPubMedPubMedCentralGoogle Scholar
  88. Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal action and selective toxicity of zero-valent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043–1055CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mimmo T, Del Buono D, Terzano R, Tomasi N, Vigani G, Crecchio G, Pinton R, Zocchi G (2014) Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur J Soil Sci 65:629–642CrossRefGoogle Scholar
  91. Mortvedt JJ (1991) Correcting iron deficiencies in annual and perennial plants: present technologies and future prospects. Plant Soil 43:315–321Google Scholar
  92. Nĕmeček J, Lhotský O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485-486:739–747CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ney A, Poulopoulos P, Farle M, Baberschke K (2000) Absolute determination of Co magnetic moments: ultrahigh-vacuum high-Tc SQUID magnetometry. Phys Rev B 62:11336–11339CrossRefGoogle Scholar
  94. Nhan LV, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B (2015a) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt–transgenic cotton. Front Plant Sci 6:1263–1272PubMedPubMedCentralGoogle Scholar
  95. Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015b) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618CrossRefPubMedPubMedCentralGoogle Scholar
  96. Niu H, Zhang D, Zhang S, Zhang X, Meng Z, Cai Y (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton–like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190(1–3):559–565CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359CrossRefPubMedPubMedCentralGoogle Scholar
  98. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefPubMedPubMedCentralGoogle Scholar
  99. Oh JK, Park JM (2011) Iron oxide–based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36(1):168–189CrossRefGoogle Scholar
  100. Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20:1041–1049CrossRefGoogle Scholar
  101. Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209–210:193–198CrossRefPubMedPubMedCentralGoogle Scholar
  102. Qiao Y, Wu J, Xu Y, Fang Z, Zheng L, Cheng W, Tsang EP, Fang J, Zhao D (2017) Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng 106:515–522CrossRefGoogle Scholar
  103. Rajendran K, Balakrishnan GS, Kalirajan J (2015) Synthesis of magnetite nanoparticles for arsenic removal from groundwater pond. Int J Pharm Tech Res 8(4):670–677Google Scholar
  104. Rao PV, Gan SH (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16:371–375CrossRefPubMedPubMedCentralGoogle Scholar
  105. Rashid MI, Price NT, Pinilla MÁ, O’Shea KE (2017a) Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–360CrossRefPubMedPubMedCentralGoogle Scholar
  106. Rashid MI, Shahzad T, Shahid M, Imran M, Dhavamani J, Ismail IM, Basahi JM, Almeelbi T (2017b) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815–824CrossRefPubMedPubMedCentralGoogle Scholar
  108. Rui Y, Zhang P, Zhang Y, Ma Y, He X, Gui X, Li Y, Zhang J, Zheng L, Chu S, Guo Z, Chai Z, Zhao Y, Zhang Z (2015) Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ Pollut 198:8–14CrossRefPubMedPubMedCentralGoogle Scholar
  109. Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M (2014) Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104:184–189CrossRefPubMedPubMedCentralGoogle Scholar
  110. Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and DNAPL targeting in saturated porous media. Environ Eng Sci 24:45–57CrossRefGoogle Scholar
  111. Sánchez-Alcalá I, Del Campillo MD, Barrón V, Torrent J (2014) Evaluation of preflooding effects on iron extract ability and phytoavailability in highly calcareous soil in containers. J Plant Nutr Soil Sci 177:150–158CrossRefGoogle Scholar
  112. Santosa SJ, Tanaka S, Siswanta D, Kunarti ES, Sudiono S, Rahmanto WH (2007) Indonesian peat soil-derived humic acids, its characterization, immobilization and performance as metal adsorbent. In: Proceedings of International Conference on Chemical Sciences (ICCS), YogyakartaGoogle Scholar
  113. Sastry RK, Rao NH, Cahoon R, Tucker K (2007) Can nanotechnology provide the innovations for a second green revolution in Indian agriculture? In: Proceedings of the Nano Scale Science and Engineering Grantees Conference, Arlington, VAGoogle Scholar
  114. Shah V, Belozerova I (2008) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148Google Scholar
  115. Shih M (2005) An overview of arsenic removal by pressure-driven membrane processes. Desalination 172:85–97CrossRefGoogle Scholar
  116. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723CrossRefGoogle Scholar
  117. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599CrossRefPubMedPubMedCentralGoogle Scholar
  118. Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of HCH-contaminated soil. J Hazard Mater 35:258–259Google Scholar
  119. Smedley PL, Kinniburg DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  120. Song K, Kim W, Suh CY, Shin D, Ko KS, Ha K (2013) Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal. Powder Technol 246:572–574CrossRefGoogle Scholar
  121. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zero-valent iron (nZVI): from synthesis to environmental applications. J Chem Eng 287:618–632CrossRefGoogle Scholar
  122. Stevenson FJ (1994) Humus chemistry, genesis, composition, reactions, 2nd edn. Wiley, New YorkGoogle Scholar
  123. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120(1-3):47–56CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticle. Colloids Surf A Physicochem Eng Aspects 308:60–66CrossRefGoogle Scholar
  125. Suominen K, Verta M, Marttinen S (2014) Hazardous organic compounds in biogas plant end products–soil burden and risk to food safety. Sci Total Environ 492:192–199CrossRefGoogle Scholar
  126. Surowiec Z, Budzyński M, Durak K, Czernel G (2017) Synthesis and characterization of iron oxide magnetic nanoparticles. Nukleonika 62(2):73–77CrossRefGoogle Scholar
  127. Tan KH (1993) Principles of soils chemistry, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  128. Tang W, Su Y, Li Q, Gao S, Shang JK (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zero-valent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242–contaminated soil. Environ Pollut 173:38–46CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tombacz E, Horvat M, Illes E (2006) Magnetite in aqueous medium: coating its surface and surface coated with it. Rom Rep Phys 58:281–286Google Scholar
  131. Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tuğba Danalıoglŭ S, Bayazit SS, Kerkezc Ö, Alhogbi BG, Abdel Salamd M (2017) Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid-coated Fe3O4 nanoparticles. Chem Eng Res Des 123:259–267CrossRefGoogle Scholar
  133. Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 66:1415–1420CrossRefGoogle Scholar
  134. Vilardi G, Di Palma L, Verdone N (2018) On the critical use of zero-valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. J Water Process Eng 22C:109–122CrossRefGoogle Scholar
  135. Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94CrossRefGoogle Scholar
  136. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wang DP (2007) Current status and future strategies for development of transgenic plants in China. J Integr Plant Biol 49:1281–1283CrossRefGoogle Scholar
  138. Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118CrossRefGoogle Scholar
  139. Wang B, Yin JJ, Zhou X, Kurash I, Chai Z, Zhao Y, Feng W (2013) Physico-chemical origin for free radical generation of iron oxide nanoparticles in bio-microenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 117:383–392CrossRefGoogle Scholar
  140. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste–activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 11(6):25857CrossRefGoogle Scholar
  141. Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H (2010) Sono–assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wu HH, Yin JJ, Wamer WG, Zeng MY, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22:86–94CrossRefPubMedPubMedCentralGoogle Scholar
  143. Xie YK, Dong H, Zeng G, Tang L, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407CrossRefPubMedPubMedCentralGoogle Scholar
  144. Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean–up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yang Y, Wang Y, Westerhoff P, Hristovski K, Jin VL (2014) Metal and nanoparticle occurrence in biosolid-amended soils. Sci Total Environ 485-486:441–449CrossRefPubMedPubMedCentralGoogle Scholar
  146. Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41(14):5114–5119CrossRefPubMedPubMedCentralGoogle Scholar
  147. Ye L, Li L, Wang L, Wang S, Li S, Du J, Zhang S, Shou H (2015) MPK3/MPK6 are involved in iron deficiency–induced ethylene production in Arabidopsis. Front Plant Sci 6:953PubMedPubMedCentralGoogle Scholar
  148. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10(10):1171–1180CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zargar SM, Agrawal GK, Rakwal R, Fukao Y (2015) Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front Plant Sci 6:592PubMedPubMedCentralGoogle Scholar
  150. Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero-valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45:2401–2414CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  152. Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C (2013) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 435:85–90CrossRefGoogle Scholar
  153. Zhou L, Thanh TL, Gong J, Kim JH, Kim EJ, Chang YS (2014) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zero-valent iron. Chemosphere 104:155–161CrossRefPubMedPubMedCentralGoogle Scholar
  154. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefPubMedPubMedCentralGoogle Scholar
  155. Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810–826CrossRefGoogle Scholar
  156. Zuo Y, Zhang FS (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khaled K. Kasem
    • 1
  • Manal Mostafa
    • 2
  • Kamel A. Abd-Elsalam
    • 3
  1. 1.Faculty of AgricultureHama UniversityHamaSyrian Arab Republic
  2. 2.CIHEAM IAMB – Mediterranean Agronomic Institute of BariValenzanoItaly
  3. 3.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt

Personalised recommendations