Transoral Robotic Surgery (TORS) Emulation Using a Highly Flexible Robotic System

  • Catalina AlmeidaEmail author
  • Nikolas BufeEmail author
  • Stefan Mattheis
  • Stephan Lang
  • Andrés Kecskeméthy
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)


The gap between the progress of transoral robotic surgery (TORS) adoption and training, has encouraged the industry to develop a variety of multiple-scenario endoscopic procedures without the need of a physical environment, in other words, surgical simulation platforms. Consequently, the authors aimed at developing the initial form of a virtual platform for the reproduction of TORSs, by embedding a highly flexible robotic manipulator, in a patient’s head and neck three-dimensional (3D) model, acquired from Computed Tomography (CT) images, to simulate a surgery. This platform intents to provide experienced and inexperienced surgeons and medical students a way of pre-planning, replaying, or practicing a surgery, outside the operating room (OR). This platform is developed in C++ under the Windows operating system using the MobileBody SDK simulation system, using two C++ program libraries, Open Inventor and Mobile. At this stage, the virtual system developed provides a total visualization of the patient’s head and neck anatomy, in different perspectives (different camera views), and provides all the movements possible of the robotic system, as in reality. This training tool will allow a proper placement of the robot with the shortest path possible, significantly influencing the success of the operation. Also, this platform, can be efficient as an educational tool for medical students and doctors who are inexperienced in TORSs.



The kind support of Medrobotics® at the Essen University Hospital is gratefully acknowledged.


No patients were involved throughout the course of this study.


  1. 1.
    Almeida, C.: Transoral Robotic Surgery (TORS) Emulation Using a Highly Flexible Robotic Manipulator (Unpublished Master’s Thesis) (2017)Google Scholar
  2. 2.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, pp. 129–136 (2008)Google Scholar
  3. 3.
    de Moraes, T.F., Amorim, P.H., Azevedo, F.S., da Silva, J.V.: InVesalius: an open-source imaging application. Comput. Vis. Med. Image Process. Vip IMAGE 2011, 405 (2011)Google Scholar
  4. 4.
    Dhillon, R., Green, M.A.: Three dimensional flow visualization in virtual reality. In: 23rd AIAA Computational Fluid Dynamics Conference, p. 3807 (2017)Google Scholar
  5. 5.
    Fisher, R.A., Dasgupta, P., Mottrie, A., Volpe, A., Khan, M.S., Challacombe, B., Ahmed, K.: An over-view of robot assisted surgery curricula and the status of their validation. Int. J. Surg. 13, 115–123 (2015)CrossRefGoogle Scholar
  6. 6.
    Hess, R.: The Essential Blender: Guide to 3D Creation with the Open Source Suite Blender. No Starch Press (2007)Google Scholar
  7. 7.
    Johnson, P.J., Serrano, C.M., Castro, M., Kuenzler, R., Choset, H., Tully, S., Duvvuri, U.: Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 123(5) (2013)Google Scholar
  8. 8.
    Kecskemethy, A.: Integrating efficient kinematics in biomechanics of human motions. Procedia IUTAM 2, 86–92 (2011)CrossRefGoogle Scholar
  9. 9.
    Kecskemethy, A., Hiller, M.: An object-oriented approach for an effective formulation of multibody dynamics. Comput. Methods Appl. Mech. Eng. 115, 287–314 (1994)CrossRefGoogle Scholar
  10. 10.
    Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C.: Robotic surgery. Ann. Surg. 239(1), 14–21 (2004)CrossRefGoogle Scholar
  11. 11.
    Lang, S., Mattheis, S., Hasskamp, P., Lawson, G., Güldner, C., Mandapathil, M., Schuler, P., Hoffmann, T., Scheithauer, M., Remacle, M.: A European multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 127(2), 391–395 (2016)CrossRefGoogle Scholar
  12. 12.
    Lendvay, T.S., Hannaford, B., Satava, R.M.: Future of robotic surgery. Cancer J. 19(2), 109–119 (2013)CrossRefGoogle Scholar
  13. 13.
    Loevner, L.A., Learned, K.O., Mohan, S., O’Malley, B.W., Scanlon, M.H., Rassekh, C.H., Weinstein, G.S.: Transoral robotic surgery in head and neck cancer: what radiologists need to know about the cutting edge. RadioGraphics 33(6), 1759–1779 (2013)CrossRefGoogle Scholar
  14. 14.
    Mackenzie, M.: The Use of the Laryngoscope in Diseases of the Throat. Lindsay & Blakiston (1869)Google Scholar
  15. 15.
    Mandapathil, M., Duvvuri, U., Güldner, C., Teymoortash, A., Lawson, G., Werner, J.A.: Transoral surgery for oropharyngeal tumors using the Medrobotics® Flex® System—a case report. Int. J. Surg. Case Rep. 10, 173–175 (2015)CrossRefGoogle Scholar
  16. 16.
    Martins, M., Cunha, A., Morgado, L.: Usability test of 3D connexion 3D mice versus keyboard mouse in second life undertaken by people with motor disabilities due to medullary lesions. Procedia Comput. Sci. 14, 119–127 (2012)CrossRefGoogle Scholar
  17. 17.
    Mattheis, S., Hasskamp, P., Holtmann, L., Schäfer, C., Geisthoff, U., Dominas, N., Lang, S.: Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39(3) (2016)Google Scholar
  18. 18.
    McHenry, K., Bajcsy, P.: An overview of 3d data content, file formats and viewers. Natl. Cent. Supercomput. Appl. 1205, 22 (2008)Google Scholar
  19. 19.
    O’ Malley, B.W., Weinstein, G.S., Hockstein, N.G.: Transoral robotic surgery (TORS): glotticmicrosurgery in a canine model. J. Voice 20(2), 263–268 (2006)CrossRefGoogle Scholar
  20. 20.
    O’Malley, B.W., Weinstein, G.S., Snyder, W., Hockstein, N.G.: Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116(8), 1465–1472 (2006)CrossRefGoogle Scholar
  21. 21.
    Pianykh, O.S.: Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide. Springer Science & Business Media (2009)Google Scholar
  22. 22.
    Preim, B., Botha, C.: Chapter 20—visual computing for ENT surgery planning. Vis. Comput. Med. 2, 61–100 (2014)CrossRefGoogle Scholar
  23. 23.
    Remacle, M., Prasad, V.M.N., Lawson, G., Plisson, L., Bachy, V., Van der Vorst, S.: Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur. Arch. Otorhinolaryngol. 272(6), 1451–1455 (2015)CrossRefGoogle Scholar
  24. 24.
    Rinaldi, V., Pagani, D., Torretta, S., Pignataro, L.: Transoral robotic surgery in the management of head and neck tumours. ecancermedicalscience 7 (2013)Google Scholar
  25. 25.
    Schuler, P., Duvvuri, U., Friedrich, D., Rotter, N., Scheithauer, M., Hoffmann, T.: First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125(3), 645–648 (2014)CrossRefGoogle Scholar
  26. 26.
    Seidler, D.R.: Digital Drawing for Designers: A Visual Guide to AutoCAD® 2017. Bloomsbury Publishing USA, Chicago (2016)Google Scholar
  27. 27.
    Sun, M., Wu, S.: A software development of DICOM image processing based on QT, VTK and ITK. In: 2013 IEEE International Conference on Medical Imaging Physics and Engineering (2013)Google Scholar
  28. 28.
    Szilvśi-Nagy, M., Matyasi, G.Y.: Analysis of STL files. Math. Comput. Model. 38(7–9), 945–960 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Weinstein, G.S., O’Malley, B.W., Hockstein, N.G.: Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 115(7), 1315–1319 (2005)CrossRefGoogle Scholar
  30. 30.
    Weinstein, G.S., O’Malley Jr., B.W., Snyder, W., Hockstein, N.G.: Transoral robotic surgery: supraglottic partial laryngectomy. Ann. Otol. Rhinol. Laryngol. 116(1), 19–23 (2007)CrossRefGoogle Scholar
  31. 31.
    Weinstein, G.S., O’Malley, B.W.: Transoral Robotic Surgery (TORS). Plural Publishing (2011)Google Scholar
  32. 32.
    Weinstein, G.S., O’Malley, B.W., Magnuson, J.S., Carroll, W.R., Olsen, K.D., Daio, L., Holsinger, F.C.: Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 122(8), 1701–1707 (2012)CrossRefGoogle Scholar
  33. 33.
    Yarlagadda, B., Grillone, G.: Anatomic considerations in transoral robotic surgery. In: Robotic Surgery of the Head and Neck, pp. 13–27 (2014)Google Scholar
  34. 34.
    Wernecke, J.: The inventor mentor: programming object-oriented 3D graphics with open inventor, release 2. Addison-Wesley, Reading, MA (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EngineeringUniversity of MinhoBragaPortugal
  2. 2.Department Mechanics and RoboticsUniversity of Duisburg-EssenDuisburgGermany
  3. 3.University Hospital EssenEssenGermany

Personalised recommendations