Advertisement

Analysis of the Dynamic Behavior of Beams Supported by a Visco-Elastic Foundation in Context to Natural Vibrissa

  • Jhohan Chavez VegaEmail author
  • Moritz ScharffEmail author
  • Thomas Helbig
  • Jorge H. Alencastre
  • Valter Böhm
  • Carsten Behn
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)

Abstract

Rodents use their mystacial vibrissae, e.g., to recognize the shape or determine the surface texture of an object. The vibrissal sensory system consists of two components: the hair shaft and the follicle-sinus complex (FSC). Both components affect the collection of information, but the impacts of the different properties are not completely clear. Borrowing the natural example, the goal is to design a powerful artificial sensor. The influence of a continuous visco-elastic support is analyzed for an artificial sensor following hypotheses about the FSC. Starting with a theoretical treatment of this scenario, the vibrissa is modeled as an Euler-Bernoulli bending beam with a partially continuous visco-elastic support. The numerical simulations are validated by experiments. Using a steel strip as a technical vibrissa and a magneto-sensitive elastomer (MSE) as representation of the artificial continuous visco-elastic support, FSC respectively, the first resonance frequency is determined.

Notes

Acknowledgements

This work was technically supported by the grants ZI540-17/2 within SPP1681 by the Deutsche Forschungsgemeinschaft (DFG).

References

  1. 1.
    Arabzadeh, E., Zorzin, E., et al.: Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol. 3, e17 (2005)CrossRefGoogle Scholar
  2. 2.
    Baldeweg, D., Will, C., et al.: Transversal vibrations of beams in context of vibrissae with foundations, discrete supports and various sections. In: Scharff, P., Weber, C., et al. (eds.) Shaping the future by engineering: 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, Germany, 8–12 Sept (2014). (ilmendia. urn:nbn:de:gbv:ilm1-2014iwk-081:7)Google Scholar
  3. 3.
    Becker, T.I., Raikher, Y.L., et al.: Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements. Smart Mater. Struct. 26, 1–9 (2017)CrossRefGoogle Scholar
  4. 4.
    Behn, C.: Adaptive control of vibrissae-like mechanical sensors. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2254–2264 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Behn, C., Scharff, M., et al.: Modeling of controllable support stiffness bio-inspired by tactile sensor systems. In: Stépán, G., Csernák, G. (eds.) Proceedings of the 9th European Nonlinear Dynamics Conference, Budapest, Hungary, 25–30 June. CongressLine Ltd. (2017). http://congressline.hu/enoc2017/abstracts/313.pdf
  6. 6.
    Chavez Vega, J., Kaufhold, T., et al.: Field-induced plasticity of magneto-sensitive elastomers in context with soft robotic gripper applications. Proc. Appl. Math. Mech. 17, 23–26 (2017)CrossRefGoogle Scholar
  7. 7.
    Conn, A.T., Pearson, M.J., et al.: Dielectric elastomer vibrissal system for active tactile sensing. In: Bar-Cohen, Y. (ed.) Electroactive polymer actuators and devices (EAPAD), San Diego, United States, pp. 12–15. March. SPIE, Bellingham, United States (2012)Google Scholar
  8. 8.
    Dörfl, J.: The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135(1), 147–154 (1982)Google Scholar
  9. 9.
    Han, Y., Hong, W., et al.: Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct. 50(14–15), 2281–2288 (2013)CrossRefGoogle Scholar
  10. 10.
    Helbig, T., Voges, D.: Characterizing the substrate contact of carpal vibrissae of rats during locomotion. In: Duff, A., Lepora, N.F., et al. (eds.) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science, vol. 8608. Springer, Cham (2014)Google Scholar
  11. 11.
    Mitchinson, B., Gurney, K.N.M.L., et al.: Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc. R. Soc. B Biol. Sci. 271(1556), 2509–2516 (2004)CrossRefGoogle Scholar
  12. 12.
    Moore, C.I., Andermann, M.L.: The vibrissa resonance hypothesis. In: Ebner, F.F. (eds.) Neural Plasticity in Adult Somatic Sensory-Motor Systems. Frontiers in Neuroscience. CRS Press, Taylor & Francis (2005)Google Scholar
  13. 13.
    Rice, F.L., Mance, A., et al.: A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J. Comp. Neurol. 252(2), 154–174 (1986)Google Scholar
  14. 14.
    Valdivia y Alvarado, P., Bhat, S.: Whisker-like sensors with tunable follicle sinus complex for underwater applications. In: Lakhtakia, A., Martn-Palma, R.J. (eds.) Bioinspiration, Biomimetics, and Bioreplication. Proceedings of SPIE, vol.9055. SPIE, Bellingham, United States (2014)Google Scholar
  15. 15.
    Vincent, S.B.: The tactile hair of the white rat. J. Comp. Neurol. 23(1), 1–34 (1913)CrossRefGoogle Scholar
  16. 16.
    Voges, D., Carl, K., et al.: Structural characterization of the whisker system of the rat. IEEE Sens. J. 12(2), 332–339 (2012)CrossRefGoogle Scholar
  17. 17.
    Wrobel, K.H.: Bau und Bedeutung der Blutsinus in den Vibrissen von Tupaia glis. Zentralblatt für Veterinärmedizin Reihe A 12(9), 807–899 (1965) [Transboundary and Emerging Diseases]Google Scholar
  18. 18.
    Zimmermann, K., Böhm, V., et al.: Investigations and simulations on the mechanical behaviour of magneto-sensitive elastomers in context with soft robotic gripper applications. Int. Sci. J. IFToMM “Problems of Mechanics” 4(65), 13–26 (2016)Google Scholar
  19. 19.
    Zucker, E., Welker, W.I.: Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res. 12(1), 138–156 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jhohan Chavez Vega
    • 1
    Email author
  • Moritz Scharff
    • 1
    Email author
  • Thomas Helbig
    • 1
  • Jorge H. Alencastre
    • 2
  • Valter Böhm
    • 1
  • Carsten Behn
    • 1
  1. 1.Department of Mechanical EngineeringTechnische Universität IlmenauIlmenauGermany
  2. 2.Department of EngineeringPontificial Catholic University of PeruLimaPeru

Personalised recommendations