Tilt Sensitivity Modeling of a Monolithic Weighing Cell Structure

  • Maximilian DarniederEmail author
  • Thomas Fröhlich
  • René Theska
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)


Weighing cells used in mass comparators are among the most sensitive force measurement devices existing, while being subject to high loads of e.g. 1 kg. The mechanical system needs to be extremely sensitive in measurement direction while being insensitive in all other directions. A disturbing factor is the tilt of the compliant mechanism relative to the gravity vector. In a small scale this tilt is time dependent and requires either an additional compensation mechanism or an insensitive configuration of the weighing cell itself. The present study focuses on the latter. A planar structure of a weighing cell is modeled by the use of a three dimensional finite element model. The gravity vector is represented in spherical coordinates, allowing the modeling of tilt about two axes. The resulting tilt reactions for the two axes are evaluated and compared.



The authors thank the German Research Foundation (DFG) for the financial support of the project with the Grant No.: TH 845/7-1 and FR 2779/6-1


  1. 1.
    Conrady, A.E.: A study of the balance. Proc. R. Soc. London Ser. A, Containing Papers of a Mathematical and Physical Character 101(710), 211–224 (1922)Google Scholar
  2. 2.
    Darnieder, M., Marangoni, R.R., Theska, R., Fröhlich, T., Rahneberg, I.: Contribution to the mechanical enhancement of load cells in precision weighing technology by means of advanced adjustment strategies. In: Billington, D., Phillips, D. (eds.) Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, pp. 411–412 (2017)Google Scholar
  3. 3.
    Darnieder, M., Theska, R., Fröhlich, T., Pabst, M., Wenig, R., Hilbrunner, F.: Design of high-precision weighing cells based on static analysis. In: Scharff, P., Weber, C., Schneider, A. (eds.) Engineering for a Changing World (2017)Google Scholar
  4. 4.
    Marangoni, R.R., Rahneberg, I., Hilbrunner, F., Theska, R., Fröhlich, T.: Analysis of weighing cells based on the principle of electromagnetic force compensation. Meas. Sci. Technol. (2017)Google Scholar
  5. 5.
    Marangoni, R.R., Schleichert, J., Rahneberg, I., Hilbrunner, F., Fröhlich, T.: A self-calibrating multicomponent force/torque measuring system. In: Engineering for a Changing World: Proceedings of 59th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau (2017)Google Scholar
  6. 6.
    Quinn, T.J.: The beam balance as an instrument for very precise weighing. Meas. Sci. Technol. 3(2), 141 (1992)CrossRefGoogle Scholar
  7. 7.
    Schleichert, J., Carlstedt, M., Marangoni, R.R., Rahneberg, I., Fröhlich, T.: Dynamische Charakterisierung eines Dreikomponenten Kraftsensors mit Hilfe eines Lorentzkraft-Lastwechslers. tm - Technisches Messen 83(7–8) (2016)Google Scholar
  8. 8.
    Speake, C.C.: Fundamental limits to mass comparison by means of a beam balance. Proc. R. Soc. A: Math. Phys. Eng. Sci. 414(1847), 333–358 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maximilian Darnieder
    • 1
    Email author
  • Thomas Fröhlich
    • 2
  • René Theska
    • 1
  1. 1.Precision Engineering Group, Institute for Design and Precision Engineering, Department of Mechanical EngineeringTechnische Universität IlmenauIlmenauGermany
  2. 2.Process Measurement Group, Institute for Process Measurement and Sensor Technology, Department of Mechanical EngineeringTechnische Universität IlmenauIlmenauGermany

Personalised recommendations