Advertisement

Auxetic Regions in Large Deformations of Periodic Frameworks

  • Ciprian S. BorceaEmail author
  • Ileana StreinuEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)

Abstract

In materials science, auxetic behavior refers to lateral widening upon stretching. We investigate the problem of finding domains of auxeticity in global deformation spaces of periodic frameworks. Case studies include planar periodic mechanisms constructed from quadrilaterals with diagonals as periods and other frameworks with two vertex orbits. We relate several geometric and kinematic descriptions.

Notes

Acknowledgements

This work was supported by the National Science Foundation (awards no. 1319389 and 1704285 to C.S.B., awards no. 1319366 and 1703765 to I.S.) and the National Institutes of Health (award 1R01GM109456 to C.S.B. and I.S.).

References

  1. 1.
    Bertoldi, K., Vitelli, V., Christensen, J., van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017)CrossRefGoogle Scholar
  2. 2.
    Borcea, C.S., Streinu, I.: Periodic frameworks and flexibility. Proc. Royal Soc. A 466, 2633–2649 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borcea, C.S., Streinu, I.: Flexible crystal frameworks. In: Proceedings Canadian Conference on Computational Geometry (CCCG 2012), Charlottetown, Prince Edward Island, Canada, Aug 2012. http://2012.cccg.ca/e-proceedings.pdf
  4. 4.
    Borcea, C.S., Streinu, I.: Minimally rigid periodic graphs. Bull. LMS 43, 1093–1103 (2011).  https://doi.org/10.1112/blms/bdr044MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borcea, C.S., Streinu, I.: Frameworks with crystallographic symmetry. Philos. Trans. Royal Soc. A 372, 20120143 (2014).  https://doi.org/10.1098/rsta.2012.0143MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borcea, C.S., Streinu, I. Kinematics of expansive planar periodic mechanisms. In: Advances in Robot Kinematics, \(J. \ Lenar\check{c}i\check{c}\) and \(O. \ Khatib\) editors, pp. 395–407. Springer (2014)Google Scholar
  7. 7.
    Borcea, C.S., Streinu, I.: Liftings and stresses for planar periodic frameworks. Discret. Comput. Geom. 53, 747–782 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Borcea, C.S., Streinu, I.: Geometric auxetics. Proc. Royal Soc. A 471, 20150033 (2015).  https://doi.org/10.1098/rspa.2015.0033MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borcea, C.S., Streinu, I.: Expansive periodic mechanisms. In: IMA Conference on Mathematics of Robotics, 2015; preprint arXiv:1507.03132
  10. 10.
    Borcea, C.S., Streinu, I.: Deforming diamond. IMA J. Appl. Math. 82(2), 371–383 (2017).  https://doi.org/10.1093/imamat/hxw055MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borcea, C.S., Streinu, I.: New principles for auxetic periodic design. SIAM J. Appl. Algebra Geom. 1(1), 442–458 (2017).  https://doi.org/10.1137/16M1088259MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borcea, C.S., Streinu, I.: Periodic auxetics: structure and design. Q. J. Mech. Appl. Math. 71(2), 125–138 (2018).  https://doi.org/10.1093/qjmam/hbx028MathSciNetCrossRefGoogle Scholar
  13. 13.
    Christensen, J., Kadic, M., Kraft, O., Wegener, M.: Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015)CrossRefGoogle Scholar
  14. 14.
    Greaves, G.N., Greer, A.L., Lakes, R., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  15. 15.
    Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7, 5111–5129 (2017)CrossRefGoogle Scholar
  16. 16.
    Lakes, R.S.: Negative-Poisson’s-Ratio materials: auxetic solids. Annu. Rev. Mater. Res. 47, 51–61 (2017)CrossRefGoogle Scholar
  17. 17.
    Laurent, M., Poljak, S.: On the structure of the set of correlation matrices. SIAM J. Matrix Anal. Appl. 17, 530–547 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ottem, J-C., Ranestad, K., Sturmfels, B., Vinzant, C.: Quartic spectrahedra. Math. Programm. Ser. B, 151 (2):585–612 (2015)Google Scholar
  19. 19.
    Reis, P.M., Jaeger, H.M., van Hecke, M.: Designer matter: a perspective. Extreme Mech. Lett. 5, 25–29 (2015)CrossRefGoogle Scholar
  20. 20.
    Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research: Materials with negative Poisson’s ratio: a review. Adv. Eng. Mater. 18(11), 1847–1870 (2016)CrossRefGoogle Scholar
  21. 21.
    Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discret. Comput. Geom. 34, 587–635 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sunada, T.: Topological Crystallography. Springer, Japan (2013)Google Scholar
  23. 23.
    Vinzant, C.: What is ... a spectrahedron? Notices AMS 61, 492–494 (2014)Google Scholar
  24. 24.
    Zang, J., Lu, G., Wang, Z., Ruan, D., Alomarah, A., Durandet, Y.: Large deformation of an auxetic structure in tension: experiments and finite element analysis. Compos. Struct. 184, 92–101 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsRider UniversityLawrencevilleUSA
  2. 2.Department of Computer ScienceSmith CollegeNorthamptonUSA

Personalised recommendations