Modeling for the Design of a Lower Limb Exoskeleton for People with Gait Impairments

  • Christian Chicoma
  • Oscar Cieza
  • Enrique Pujada
  • Dante A. EliasEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 71)


As part of the research efforts carried out at the Pontificia Universidad Católica del Perú, proposed models of lower limb exoskeletons were developed and simulated with the aim of getting valuable information for later mechanical design, and control system design, of the Lima lower limb exoskeleton for rehabilitation cases, which should replicate human gait and help people with gait impairments in the attempt to recover gait ability. This paper describes the process of modeling proposed for the Lima lower limb exoskeleton and shows simulation results that are important for future works.


Lower limb Exoskeleton Normal gait 



This work was supported by Innovate Peru, an entity of the Government of Peru, through grant N° 203-FINCyT-IA-2013, and by Dirección de Gestión de la Investigación (DGI-PUCP).


  1. 1.
    Consejo Nacional para la Integración de la Persona con Discapacidad: Anuario Estadístico del Registro Nacional de la Persona con Discapacidad. Lima, Perú (2015). Accessed 3 Nov 2017
  2. 2.
    Pirker, W., Katzenschlager, R.: Gait disorders in adults and the elderly. Wiener Klinische Wochenschr. 129(3–4), 81–95 (2017)CrossRefGoogle Scholar
  3. 3.
    Vaughan, C., Davis, B., O’Connor, J.: Dynamics of Human Gait, 2nd edn. Kiboho Publisher, South Africa (1999)Google Scholar
  4. 4.
    Contreras, L., Roa, M.: Modelamiento de la marcha humana por medio de gráficos de unión. Revista Tecnura 8(16), 26–42 (2005)Google Scholar
  5. 5.
    Hu, T., Lin, Z., Abel, M.F., Allaire, P.E.: Human gait modeling: dealing with holomonic constraints. In: Proceedings of the 2004 American Control Conference, Boston, MA, USA, vol. 3, 2296–2301 (2004)Google Scholar
  6. 6.
    Srinivasan, S.: Low-dimensional and analysis of human gait with application to the gait of transtibial prosthesis users. Doctor of Philosophy Dissertation, Ohio State University, OH, USA (2007)Google Scholar
  7. 7.
    Nacy, S.M., Hassan, S.S., Hanna, M.Y.: A modified dynamic model of the human lower limb during complete gait cycle. Int. J. Mech. Eng. Rob. Res. 2(2), 8–19 (2013)Google Scholar
  8. 8.
    Baluch, T., Masood, A., Iqbal, J., Izhar, U., Khan, U.: Kinematic and dynamic analysis of a lower limb exoskeleton. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 6(9), 1945–1949 (2012)Google Scholar
  9. 9.
    Majeeda, A., Tahaa, Z., Abidinb, A., Zakariaa, M., Khairuddina, I., Razman, M., Mohamed, Z.: The control of a lower limb exoskeleton for gait rehabilitation: a hybrid active force control approach. Procedia Comput. Sci. 105, 183–190 (2017)CrossRefGoogle Scholar
  10. 10.
    Pujada, E.: Modelación y simulación dinámica de un mecanismo exoesquelético para personas con dificultades en la marcha. Mechanical Engineering Thesis, Pontificia Universidad Católica del Perú. Lima, Perú (2009)Google Scholar
  11. 11.
    Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. University of Waterloo Press, Waterloo, Ont (1991)Google Scholar
  12. 12.
    Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 4th Edition. Wiley, Hoboken (2009)Google Scholar
  13. 13.
    Tsai, Lung-Wen: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Chicoma
    • 1
  • Oscar Cieza
    • 1
  • Enrique Pujada
    • 1
  • Dante A. Elias
    • 1
    Email author
  1. 1.Laboratory of Research in Biomechanics and Applied Robotics, Department of Mechanical EngineerPontificia Universidad Católica Del PerúLimaPeru

Personalised recommendations