Advertisement

Precision Medicine-Enabled Cancer Immunotherapy

  • John K. Lee
  • Saul J. PricemanEmail author
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 178)

Abstract

Repairing defects in anti-tumor immunity has been a longstanding challenge in cancer therapy, and in recent years, immunotherapy has emerged as a promising approach for treating advanced disease. While the interactions between the immune system and cancer have been studied for more than a century, only in recent years has the field realized the tremendous potential in stimulating the immune system to eradicate cancer. From early investigations by William Coley in using bacteria to treat cancer patients to more recent work in adoptively transferred engineered T cells to identify and kill cancer cells has opened up an entire field dedicated to re-educating the immune system in a cancer patient. A multitude of immunotherapy strategies have been proposed and tested in clinical trials, from recombinant proteins, agonistic antibodies, and checkpoint inhibitors designed to re-invigorate anti-tumor immunity, to vaccine approaches and adoptive T-cell strategies, we are now on the cusp of an exciting revolution that will ultimately become an arsenal of therapies to treat any cancer type, at any stage, with the hope of robust and durable responses in cancer patients. In this chapter, we will examine the various immunotherapy strategies under active clinical investigation, with a particular focus on the latest advances in cellular immunotherapies and the future of precision medicine-enabled immunotherapy.

Keywords

Cancer immunotherapy Precision medicine Cancer vaccines Checkpoint inhibitors Oncolytic virus 

References

  1. 1.
    Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48PubMedPubMedCentralGoogle Scholar
  2. 2.
    Old LJ, Clarke DA, Benacerraf B (1959) Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184(Suppl 5):291–292PubMedCrossRefGoogle Scholar
  3. 3.
    Morales A, Eidinger D, Bruce AW (1976) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 116(2):180–183PubMedCrossRefGoogle Scholar
  4. 4.
    Hanna MG Jr, Peters LC (1978) Specific immunotherapy of established visceral micrometastases by BCG-tumor cell vaccine alone or as an adjunct to surgery. Cancer 42(6):2613–2625PubMedCrossRefGoogle Scholar
  5. 5.
    Dranoff G et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90(8):3539–3543PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Higano CS et al (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113(5):975–984PubMedCrossRefGoogle Scholar
  7. 7.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schwartzentruber DJ et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weller M et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18(10):1373–1385PubMedCrossRefGoogle Scholar
  10. 10.
    Butts C et al (2014) Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 15(1):59–68PubMedCrossRefGoogle Scholar
  11. 11.
    Walter S et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261PubMedCrossRefGoogle Scholar
  12. 12.
    Rini BI et al (2016) IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol 17(11):1599–1611PubMedCrossRefGoogle Scholar
  13. 13.
    Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRefGoogle Scholar
  14. 14.
    Gulley JL et al (2014) Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol Res 2(2):133–141PubMedCrossRefGoogle Scholar
  15. 15.
    Kantoff PW, Gulley JL, Pico-Navarro C (2017) Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 35(1):124–125PubMedCrossRefGoogle Scholar
  16. 16.
    Ohto U et al (2015) Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520(7549):702–705PubMedCrossRefGoogle Scholar
  17. 17.
    van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442PubMedCrossRefGoogle Scholar
  18. 18.
    Robbins PF et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Medrano RFV et al (2017) Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 8(41):71249–71284PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Creagan ET et al (1986) Recombinant leukocyte A interferon (rIFN-alpha A) in the treatment of disseminated malignant melanoma. Analysis of complete and long-term responding patients. Cancer 58(12):2576–2578PubMedCrossRefGoogle Scholar
  22. 22.
    Rosenberg SA et al (1984) Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 223(4643):1412–1414PubMedCrossRefGoogle Scholar
  23. 23.
    Fyfe GA et al (1996) Long-term response data for 255 patients with metastatic renal cell carcinoma treated with high-dose recombinant interleukin-2 therapy. J Clin Oncol 14(8):2410–2411PubMedCrossRefGoogle Scholar
  24. 24.
    Atkins MB et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116PubMedCrossRefGoogle Scholar
  25. 25.
    Marks-Konczalik J et al (2000) IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97(21):11445–11450PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Voest EE et al (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586PubMedCrossRefGoogle Scholar
  27. 27.
    Ng S, Galipeau J (2015) Concise review: engineering the fusion of cytokines for the modulation of immune cellular responses in cancer and autoimmune disorders. Stem Cells Transl Med 4(1):66–73PubMedCrossRefGoogle Scholar
  28. 28.
    Sabzevari H et al (1994) A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci U S A 91(20):9626–9630PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Williams JB et al (2017) The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med 214(2):381–400PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Melero I et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3(6):682–685PubMedCrossRefGoogle Scholar
  31. 31.
    Weinberg AD et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164(4):2160–2169PubMedCrossRefGoogle Scholar
  32. 32.
    Sagiv-Barfi I et al (2018) Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med 10(426)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Shrimali RK et al (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5(9):755–766PubMedCrossRefGoogle Scholar
  34. 34.
    Chambers CA et al (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594PubMedCrossRefGoogle Scholar
  35. 35.
    Walunas TL et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413PubMedCrossRefGoogle Scholar
  36. 36.
    Schadendorf D et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355PubMedCrossRefGoogle Scholar
  38. 38.
    Baumeister SH et al (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573PubMedCrossRefGoogle Scholar
  39. 39.
    Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532PubMedCrossRefGoogle Scholar
  40. 40.
    Le DT et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662PubMedCrossRefGoogle Scholar
  42. 42.
    Rehman H et al (2016) Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Martin NT, Bell JC (2018) Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther 26(6):1414–1422PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Delorme EJ, Alexander P (1964) Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet 2(7351):117–120PubMedCrossRefGoogle Scholar
  45. 45.
    Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193(4257):1007–1008PubMedCrossRefGoogle Scholar
  46. 46.
    Donohue JH et al (1984) The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol 132(4):2123–2128PubMedGoogle Scholar
  47. 47.
    Eberlein TJ, Rosenstein M, Rosenberg SA (1982) Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 156(2):385–397PubMedCrossRefGoogle Scholar
  48. 48.
    Rosenberg SA et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492PubMedCrossRefGoogle Scholar
  49. 49.
    Tran E et al (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350(6266):1387–1390PubMedCrossRefGoogle Scholar
  50. 50.
    Tran E et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zacharakis N et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Morgan RA et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Robbins PF et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Stevanovic S et al (2015) Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 33(14):1543–1550PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Parkhurst MR et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626PubMedCrossRefGoogle Scholar
  57. 57.
    Morgan RA et al (2013) Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRefGoogle Scholar
  59. 59.
    Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Priceman SJ, Forman SJ, Brown CE (2015) Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 27(6):466–474PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hartmann J et al (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Neelapu SS et al (2018) Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 15(1):47–62PubMedCrossRefGoogle Scholar
  64. 64.
    Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hugo W et al (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162(6):1271–1285PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Auslander N et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat MedGoogle Scholar
  69. 69.
    Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shin DS et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201PubMedCrossRefGoogle Scholar
  71. 71.
    Page DB et al (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4(10):835–844PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hopkins AC et al (2018) T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3(13)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Hematology and Hematopoietic Cell TransplantationCity of HopeDuarteUSA

Personalised recommendations