Advertisement

Artificial Intelligence and Personalized Medicine

  • Nicholas J. SchorkEmail author
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 178)

Abstract

The development of high-throughput, data-intensive biomedical research assays and technologies has created a need for researchers to develop strategies for analyzing, integrating, and interpreting the massive amounts of data they generate. Although a wide variety of statistical methods have been designed to accommodate ‘big data,’  experiences with the use of artificial intelligence (AI) techniques suggest that they might be particularly appropriate. In addition,  the results of the application of these assays reveal a great heterogeneity in the pathophysiologic factors and processes that contribute to disease, suggesting that there is a need to tailor, or ‘personalize,’ medicines to the nuanced and often unique features possessed by individual patients. Given how important data-intensive assays are to revealing appropriate intervention targets and strategies for  treating an individual with a disease, AI can play an important role in the development of personalized medicines. We describe many areas where AI can play such a role and argue that AI’s ability to advance personalized medicine will depend critically on not only the refinement of relevant assays, but also on ways of storing, aggregating, accessing, and ultimately integrating, the data they produce. We also point out the limitations of many AI techniques in developing personalized medicines as well as consider areas for further research.

Keywords

Artificial intelligence Big data Personalized medicine Clinical trials 

References

  1. 1.
    Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Pearson, Carmel, INGoogle Scholar
  2. 2.
    Mahmud M et al (2018) Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst 29(6):2063–2079PubMedCrossRefGoogle Scholar
  3. 3.
    Webb S (2018) Deep learning for biology. Nature 554(7693):555–557PubMedCrossRefGoogle Scholar
  4. 4.
    Fleming N (2018) How artificial intelligence is changing drug discovery. Nature 557(7707):S55–S57PubMedCrossRefGoogle Scholar
  5. 5.
    Committee to Review the Clinical and Translational Science Awards Program at the National Center for Advancing Translational Sciences, Board on Health Sciences Policy, Institute of Medicine, Leshner AI, Terry S (eds) (2013) The CTSA program at NIH: opportunities for advancing clinical and translational research. The national academies collection: reports funded by National Institutes of Health. National Academies Press, Washington, DCGoogle Scholar
  6. 6.
    Schork NJ, Nazor K (2017) Integrated genomic medicine: a paradigm for rare diseases and beyond. Adv Genet 97:81–113PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Telenti A et al (2018) Deep learning of genomic variation and regulatory network data. Hum Mol Genet 27(R1):R63–R71PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118PubMedCrossRefGoogle Scholar
  9. 9.
    Gerstung M et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49(3):332–340PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gulshan V et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen JD et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bray MA et al (2017) A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. Gigascience 6(12):1–5PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ma J et al (2018) Using deep learning to model the hierarchical structure and function of a cell. Nat Methods 15(4):290–298PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ideker T et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518):929–934PubMedCrossRefGoogle Scholar
  15. 15.
    Bohannon J (2017) The cyberscientist. Science 357(6346):18–21PubMedCrossRefGoogle Scholar
  16. 16.
    King RD et al (2009) The automation of science. Science 324(5923):85–89PubMedCrossRefGoogle Scholar
  17. 17.
    Sparkes A, Clare A (2012) AutoLabDB: a substantial open source database schema to support a high-throughput automated laboratory. Bioinformatics 28(10):1390–1397PubMedCrossRefGoogle Scholar
  18. 18.
    Butler KT et al (2018) Machine learning for molecular and materials science. Nature 559(7715):547–555PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360–365PubMedCrossRefGoogle Scholar
  20. 20.
    Aage N et al (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86PubMedCrossRefGoogle Scholar
  21. 21.
    Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604–610PubMedCrossRefGoogle Scholar
  22. 22.
    Ahneman DT et al (2018) Predicting reaction performance in C-N cross-coupling using machine learning. Science 360(6385):186–190PubMedCrossRefGoogle Scholar
  23. 23.
    Radovic A et al (2018) Machine learning at the energy and intensity frontiers of particle physics. Nature 560(7716):41–48PubMedCrossRefGoogle Scholar
  24. 24.
    Silver D et al (2017) Mastering the game of Go without human knowledge. Nature 550(7676):354–359PubMedCrossRefGoogle Scholar
  25. 25.
    Madhukar NS et al (2018) A new big-data paradigm for target identification and drug discovery. BioRxiv.  https://doi.org/10.1101/134973
  26. 26.
    Chen B, Butte AJ (2016) Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 99(3):285–297PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hu Y, Bajorath J (2017) Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited. Future Sci OA 3(2):FSO179PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hernandez D (2018) How robots are making better drugs, faster. In: Wall Street Journal. Dow Jones & Company, New York, NYGoogle Scholar
  29. 29.
    Patient-centered drug manufacture (2017) Nat Biotechnol 35(6):485CrossRefGoogle Scholar
  30. 30.
    Schellekens H et al (2017) Making individualized drugs a reality. Nat Biotechnol 35(6):507–513PubMedCrossRefGoogle Scholar
  31. 31.
    Lavertu A et al (2018) Pharmacogenomics and big genomic data: from lab to clinic and back again. Hum Mol Genet 27(R1):R72–R78PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kalinin AA et al (2018) Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 19(7):629–650PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520(7549):609–611PubMedCrossRefGoogle Scholar
  34. 34.
    Serhani MA et al (2017) New algorithms for processing time-series big EEG data within mobile health monitoring systems. Comput Methods Programs Biomed 149:79–94PubMedCrossRefGoogle Scholar
  35. 35.
    Marr B (2017) First FDA approval for clinical cloud-based deep learning in healthcare. In: Forbes. Forbes Publishing Company, New York CityGoogle Scholar
  36. 36.
    Miotto R et al (2016) Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 6:26094PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rossi G, Manfrin A, Lutolf MP (2018) Progress and potential in organoid research. Nat Rev GenetGoogle Scholar
  38. 38.
    Deng Y et al (2018) Massive single-cell RNA-seq analysis and imputation via deep learning. BioRxiv. https://t.co/EGBwlYFLLK
  39. 39.
    Yauney G, Shah P (2018) Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. In: Proceedings of machine learning research, vol 85Google Scholar
  40. 40.
    Biankin AV, Piantadosi S, Hollingsworth SJ (2015) Patient-centric trials for therapeutic development in precision oncology. Nature 526(7573):361–370PubMedCrossRefGoogle Scholar
  41. 41.
    Kodack DP et al (2017) Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep 21(11):3298–3309PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gorshkov K et al (2018) Advancing precision medicine with personalized drug screening. Drug Discov TodayGoogle Scholar
  43. 43.
    Miranda CC et al (2018) Towards multi-organoid systems for drug screening applications. Bioengineering (Basel) 5(3)PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Scott IA et al (2018) Using EMR-enabled computerized decision support systems to reduce prescribing of potentially inappropriate medications: a narrative review. Ther Adv Drug Saf 9(9):559–573PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dreyer KJ, Geis JR (2017) When machines think: radiology’s next frontier. Radiology 285(3):713–718PubMedCrossRefGoogle Scholar
  46. 46.
    Nabi J (2018) How bioethics can shape artificial intelligence and machine learning. Hastings Cent Rep 48(5):10–13PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Etheredge LM (2007) A rapid-learning health system. Health Aff (Millwood) 26(2):w107–w118CrossRefGoogle Scholar
  48. 48.
    Shrager J, Tenenbaum JM (2014) Rapid learning for precision oncology. Nat Rev Clin Oncol 11(2):109–118PubMedCrossRefGoogle Scholar
  49. 49.
    Shah A et al (2016) Building a rapid learning health care system for oncology: why CancerLinQ collects identifiable health information to achieve its vision. J Clin Oncol 34(7):756–763PubMedCrossRefGoogle Scholar
  50. 50.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  51. 51.
    Schork NJ, Goetz LH (2017) Single-subject studies in translational nutrition research. Annu Rev Nutr 37:395–422PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Agarwala V et al (2018) Real-world evidence in support of precision medicine: clinico-genomic cancer data as a case study. Health Aff (Millwood) 37(5):765–772CrossRefGoogle Scholar
  53. 53.
    Williams MS et al (2018) Patient-centered precision health in a learning health care system: Geisinger’s genomic medicine experience. Health Aff (Millwood) 37(5):757–764CrossRefGoogle Scholar
  54. 54.
    Rajkomar A et al (2018) Scalable and accurate deep learning with electronic health records. NPJ Digit Med 1(18)Google Scholar
  55. 55.
    Ali M, Aittokallio T (2018) Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys RevGoogle Scholar
  56. 56.
    Mathe E et al (2018) The omics revolution continues: the maturation of high-throughput biological data sources. Yearb Med Inform 27(1):211–222PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Varghese J et al (2018) CDEGenerator: an online platform to learn from existing data models to build model registries. Clin Epidemiol 10:961–970PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lerner I et al (2018) Revolution in health care: how will data science impact doctor-patient relationships? Front Public Health 6:99PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Savage N (2017) Machine learning: calculating disease. Nature 550(7676):S115–S117PubMedCrossRefGoogle Scholar
  60. 60.
    Bycroft C et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209PubMedCrossRefGoogle Scholar
  61. 61.
    Sankar PL, Parker LS (2017) The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal, and social issues. Genet Med 19(7):743–750PubMedCrossRefGoogle Scholar
  62. 62.
    Li C et al (2018) Application of induced pluripotent stem cell transplants: autologous or allogeneic? Life SciGoogle Scholar
  63. 63.
    Graham C et al (2018) Allogeneic CAR-T cells: more than ease of access? Cells 7(10)PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Tan R, Yang X, Shen Y (2017) Robot-aided electrospinning toward intelligent biomedical engineering. Robotics Biomim 4(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Osouli-Bostanabad K, Adibkia K (2018) Made-on-demand, complex and personalized 3D-printed drug products. Bioimpacts 8(2):77–79PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schork NJ (2018) Randomized clinical trials and personalized medicine: a commentary on deaton and cartwright. Soc Sci Med 210:71–73PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Shamsuddin R et al (2018) Virtual patient model: an approach for generating synthetic healthcare time series data. In: IEEE international conference on healthcare informatics. IEEE Computer SocietyGoogle Scholar
  68. 68.
    Fisher AJ, Medaglia JD, Jeronimus BF (2018) Lack of group-to-individual generalizability is a threat to human subjects research. Proc Natl Acad Sci U S A 115(27):E6106–E6115PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Drescher CW et al (2013) Longitudinal screening algorithm that incorporates change over time in CA125 levels identifies ovarian cancer earlier than a single-threshold rule. J Clin Oncol 31(3):387–392PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou N et al (2018) Concordance study between IBM Watson for Oncology and clinical practice for patients with cancer in China. OncologistGoogle Scholar
  71. 71.
    Schmidt C (2017) M. D. Anderson breaks with IBM Watson, raising questions about artificial intelligence in oncology. J Natl Cancer Inst 109(5):4–5CrossRefGoogle Scholar
  72. 72.
    Abramoff MD et al (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 1(39)Google Scholar
  73. 73.
    Lazer D et al (2014) Big data. The parable of Google Flu: traps in big data analysis. Science 343(6176):1203–1205PubMedCrossRefGoogle Scholar
  74. 74.
    Le Tourneau C et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16(13):1324–1334PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ioannidis JPA, Khoury MJ (2018) Evidence-based medicine and big genomic data. Hum Mol Genet 27(R1):R2–R7PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    AI diagnostics need attention (2018) Nature 555(7696):285Google Scholar
  77. 77.
    Frieden TR (2017) Evidence for health decision making—beyond randomized, controlled trials. N Engl J Med 377(5):465–475PubMedCrossRefGoogle Scholar
  78. 78.
    Abernethy A, Khozin S (2017) Clinical drug trials may be coming to your doctor’s office. In: Wall Street Journal. Dow Jones & Company, New York, NYGoogle Scholar
  79. 79.
    Voosen P (2017) The AI detectives. Science 357(6346):22–27PubMedCrossRefGoogle Scholar
  80. 80.
    Marwala T (2015) Causality, correlation and artificial intelligence for rational decision making. World Scientific, New JerseyCrossRefGoogle Scholar
  81. 81.
    Ciliberto C et al (2018) Quantum machine learning: a classical perspective. Proc Math Phys Eng Sci 474(2209):20170551PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Li RY et al (2018) Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf 4Google Scholar
  83. 83.
    Vashistha R et al (2018) Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3 Biotech 8(8):358PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Palsson B (2015) Systems biology: constraint-based reconstruction and analysis, 2nd edn. Cambridge University Press, Boston, MACrossRefGoogle Scholar
  85. 85.
    Ideker T, Dutkowski J, Hood L (2011) Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144(6):860–863PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Khera AV et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50(9):1219–1224PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Warren M (2018) The approach to predictive medicine that is taking genomics research by storm. Nature 562(7726):181–183PubMedCrossRefGoogle Scholar
  88. 88.
    Schork AJ, Schork MA, Schork NJ (2018) Genetic risks and clinical rewards. Nat Genet 50(9):1210–1211PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Patel CJ et al (2013) Whole genome sequencing in support of wellness and health maintenance. Genome Med 5(6):58PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Schork NJ (2013) Genetic parts to a preventive medicine whole. Genome Med 5(6):54PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mapara SS, Patravale VB (2017) Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment. J Control Release 261:337–351PubMedCrossRefGoogle Scholar
  92. 92.
    Topol EJ (2019) Deep medicine: how artificial intelligence can make healthcare human again. Basic Books, New YorkGoogle Scholar
  93. 93.
    David LA et al (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15(7):R89PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen R et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Magnuson V, Wang Y, Schork N (2016) Normalizing sleep quality disturbed by psychiatric polypharmacy: a single patient open trial (SPOT). F1000Research 5:132PubMedPubMedCentralGoogle Scholar
  96. 96.
    Zeevi D et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163(5):1079–1094PubMedCrossRefGoogle Scholar
  97. 97.
    Smarr L et al (2017) Tracking human gut microbiome changes resulting from a colonoscopy. Methods Inf Med 56(6):442–447PubMedCrossRefGoogle Scholar
  98. 98.
    Trammell SA et al (2016) Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 7:12948PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Forsdyke DR (2015) Summertime dosage-dependent hypersensitivity to an angiotensin II receptor blocker. BMC Res Notes 8:227PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    O’Rawe JA et al (2013) Integrating precision medicine in the study and clinical treatment of a severely mentally ill person. PeerJ 1:e177PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Li W et al (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci U S A 113(23):6544–6549PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bloss CS et al (2015) A genome sequencing program for novel undiagnosed diseases. Genet Med 17(12):995–1001PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Piening BD et al (2018) Integrative personal omics profiles during periods of weight gain and loss. Cell Syst 6(2):157–170 e8Google Scholar
  104. 104.
    Zalusky R, Herbert V (1961) Megaloblastic anemia in scurvy with response to 50 microgm. of folic acid daily. N Engl J Med 265:1033–1038PubMedCrossRefGoogle Scholar
  105. 105.
    Herbert V (1962) Experimental nutritional folate deficiency in man. Trans Assoc Am Physicians 75:307–320PubMedGoogle Scholar
  106. 106.
    Golding PH (2014) Severe experimental folate deficiency in a human subject—a longitudinal study of biochemical and haematological responses as megaloblastic anaemia develops. Springerplus 3:442PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Quantitative MedicineThe Translational Genomics Research Institute (TGen)PhoenixUSA
  2. 2.The City of Hope/TGen IMPACT CenterDuarteUSA
  3. 3.The University of California San DiegoLa JollaUSA

Personalised recommendations