Advertisement

Microbial Nanobionics: Application of Nanobiosensors in Microbial Growth and Diagnostics

  • Monica Butnariu
  • Alina Butu
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Microbial nanobiosensors (NBSs) contain immobilized microorganisms and a chain of transduction and are generally used for a single biochemical process. There are two classes of microbial NBSs that use the same principle for measuring the activity of metabolism in the presence of the analyte. The NBSs using immobilized microorganisms from which the products resulting from metabolism are measured are known as microbial NBSs. NBSs that measure the electrical activity of the metabolism of microorganisms when consuming a “biofuel” are generally known as bioelectrochemical cells or biofuel cells. The advantages of microbial NBSs are lower sensitivity to inhibition and contamination of the substrate; higher tolerance to pH and temperature variations; higher lifetime compared to the enzymatic ones; cheap; high variability, because they are able to adapt better to environmental conditions; cofactor independence; physiological response to toxic compounds; and ease of preparation due to the easy cultivation of microorganisms. The disadvantages of NBSs are as follows: they have a longer response time than enzymatic electrodes; and reusing them in a new measurement requires a longer time. Photomicrobial NBSs are based on the optical phenomena manifested by microorganisms in metabolic processes: photoluminescence, chemiluminescence, electroluminescence, polarization, absorbance, etc.

Keywords

Microbial nanobiosensors Photoluminescence Chemiluminescence Electrochemical Thermistor Biofuel cells Siderophores 

References

  1. Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Screen–printed biosensors in microbiology: a review. Talanta 82(5):1629–1636PubMedCrossRefGoogle Scholar
  2. Chen J, Park B (2016) Recent advancements in nanobioassays and nanobiosensors for foodborne pathogenic bacteria detection. J Food Prot 79(6):1055–1069PubMedCrossRefGoogle Scholar
  3. Cheng MS, Lau SH, Chow VT, Toh CS (2011) Membrane–based electrochemical nanobiosensor for Escherichia coli detection and analysis of cells viability. Environ Sci Technol 45(15):6453–6459PubMedCrossRefGoogle Scholar
  4. Cho JH, Lee DY, Lim WK, Shin HJ (2014) A recombinant Escherichia coli biosensor for detecting polycyclic aromatic hydrocarbons in gas and aqueous phases. Prep Biochem Biotechnol 44(8):849–860PubMedCrossRefGoogle Scholar
  5. Choi O, Lee Y, Han I, Kim H, Goo E, Kim J, Hwang I (2013) A simple and sensitive biosensor strain for detecting toxoflavin using β–galactosidase activity. Biosens Bioelectron 50:256–261PubMedCrossRefGoogle Scholar
  6. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353PubMedCrossRefGoogle Scholar
  7. Espinosa-Urgel M, Serrano L, Ramos JL, Fernández–Escamilla AM (2015) Engineering Biological Approaches for Detection of Toxic Compounds: a New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Mol Biotechnol 57(6):558–564PubMedCrossRefGoogle Scholar
  8. Gao G, Qian J, Fang D, Yu Y, Zhi J (2016) Development of a mediated whole cell–based electrochemical biosensor for joint toxicity assessment of multi–pollutants using a mixed microbial consortium. Anal Chim Acta 924:21–28PubMedCrossRefGoogle Scholar
  9. Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97(10):4259–4275PubMedCrossRefGoogle Scholar
  10. Gredell JA, Frei CS, Cirino PC (2012) Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 7(4):477–499PubMedCrossRefGoogle Scholar
  11. Hou QH, Ma AZ, Zhuang XL, Zhuang GQ (2013) Construction and properties of a microbial whole–cell sensor CB10 for the bioavailability detection of Cr6+. Environ Sci 34(3):1181–1189Google Scholar
  12. Hsieh MC, Chung YC (2014) Measurement of biochemical oxygen demand from different wastewater samples using a mediator–less microbial fuel cell biosensor. Environ Technol 35(17–20):2204–2211PubMedCrossRefGoogle Scholar
  13. Jin X, Angelidaki I, Zhang Y (2016) Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion. Environ Sci Technol 50(8):4422–4429PubMedCrossRefGoogle Scholar
  14. Kaur A, Kim JR, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron 47:50–55PubMedCrossRefGoogle Scholar
  15. Kumar J, D’Souza SF (2010) An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosens Bioelectron 26(4):1292–1296PubMedCrossRefGoogle Scholar
  16. Kumar J, D’Souza SF (2011) Immobilization of microbial cells on inner epidermis of onion bulb scale for biosensor application. Biosens Bioelectron 26(11):4399–4404PubMedCrossRefGoogle Scholar
  17. Liu Z, Liu J, Zhang S, Xing XH, Su Z (2011) Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour Technol 102(22):10221–10229PubMedCrossRefGoogle Scholar
  18. Lu TK, Bowers J, Koeris MS (2013) Advancing bacteriophage–based microbial diagnostics with synthetic biology. Trends Biotechnol 31(6):325–327PubMedCrossRefGoogle Scholar
  19. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor–driven adaptive laboratory evolution of l–valine production in Corynebacterium glutamicum. Metab Eng 32:184–194PubMedCrossRefGoogle Scholar
  20. Mulchandani A, Rajesh R (2011) Microbial biosensors for organophosphate pesticides. Appl Biochem Biotechnol 165(2):687–699PubMedCrossRefGoogle Scholar
  21. Nigam VK, Shukla P (2015) Enzyme based biosensors for detection of environmental pollutants: a review. J Microbiol Biotechnol 25(11):1773–1781PubMedCrossRefGoogle Scholar
  22. Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sens (Basel) 13(5):5777–5795CrossRefGoogle Scholar
  23. Safarpour H, Safarnejad MR, Tabatabaie M, Mohsenifar A (2012) Development of high–throughput quantum dot biosensor against Polymyxa species. Commun Agric Appl Biol Sci 77(3):7–13PubMedGoogle Scholar
  24. Saikia SK, Gupta R, Pant A, Pandey R (2014) Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. J Expo Sci Environ Epidemiol 24(2):180–184PubMedCrossRefGoogle Scholar
  25. Schallmey M, Frunzke J, Eggeling L, Marienhagen J (2014) Looking for the pick of the bunch: high–throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol 26:148–154PubMedCrossRefGoogle Scholar
  26. Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J (2013) Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron 50:235–238PubMedCrossRefGoogle Scholar
  27. Schenkmayerová A, Bertóková A, Sefčovičová J, Stefuca V, Bučko M, Vikartovská A, Gemeiner P, Tkáč J, Katrlík J (2015) Whole–cell Gluconobacter oxydans biosensor for 2–phenylethanol biooxidation monitoring. Anal Chim Acta 854:140–144PubMedCrossRefGoogle Scholar
  28. Schneider G, Kovács T, Rákhely G, Czeller M (2016) Biosensoric potential of microbial fuel cells. Appl Microbiol Biotechnol 100(16):7001–7019PubMedCrossRefGoogle Scholar
  29. Shin HJ (2010) Development of highly–sensitive microbial biosensors by mutation of the nahR regulatory gene. J Biotechnol 150(2):246–250PubMedCrossRefGoogle Scholar
  30. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799PubMedCrossRefGoogle Scholar
  31. Sun JZ, Peter Kingori G, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC (2015) Microbial fuel cell–based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801–809PubMedCrossRefGoogle Scholar
  32. Tepper N, Shlomi T (2011) Computational design of auxotrophy–dependent microbial biosensors for combinatorial metabolic engineering experiments. PLoS One 6(1):e16274PubMedPubMedCentralCrossRefGoogle Scholar
  33. Virolainen N, Karp M (2014) Biosensors, antibiotics and food. Adv Biochem Eng Biotechnol 145:153–185PubMedGoogle Scholar
  34. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100(6):2555–2566PubMedCrossRefGoogle Scholar
  35. Wang X, Liu M, Wang X, Wu Z, Yang L, Xia S, Chen L, Zhao J (2013) p–Benzoquinone–mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens Bioelectron 41:557–562PubMedCrossRefGoogle Scholar
  36. Wang J, Zheng Y, Jia H, Zhang H (2014) Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell–based biosensor for tubular membrane bioreactor. Bioresour Technol 170:483–490PubMedCrossRefGoogle Scholar
  37. Weising K, Kahl G (1996) Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 12(4):327–351PubMedCrossRefGoogle Scholar
  38. Williams TC, Pretorius IS, Paulsen IT (2016) Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34(5):371–381PubMedCrossRefGoogle Scholar
  39. Yang H, Zhou M, Liu M, Yang W, Gu T (2015) Microbial fuel cells for biosensor applications. Biotechnol Lett 37(12):2357–2364PubMedCrossRefGoogle Scholar
  40. Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19(7):323–329PubMedCrossRefGoogle Scholar
  41. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monica Butnariu
    • 1
  • Alina Butu
    • 2
  1. 1.Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from TimisoaraTimisRomania
  2. 2.National Institute of Research and Development for Biological SciencesBucharestRomania

Personalised recommendations