Advertisement

Processing of Nanoparticles by Biomatrices in a Green Approach

  • Marcia Regina SalvadoriEmail author
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

A considerable number of techniques have been devised for the design of nanoparticles, owing to their increasing use in various sectors of the economy. Currently, the development of nanotechnology is focused on a green approach, low-cost, and environmentally safe synthesis methods, using biomatrices such as algae, bacteria, fungi, yeasts, plants, protozoans, and viruses, among others. The green processes in nanofactories have several biomedical and industrial applications, including their use as antimicrobial activity, drug delivery, medical imaging devices, high-temperature superconductors, wood preservatives, solar cells, catalytic processes, gas sensors, etc. These green methodologies are being processed in counterpart to chemical and physical methods. Most of these processes normally require harsh and toxic chemical additives, physical conditions such as high pressure and high temperatures, and expensive infrastructure, with a negative impact on the environment, and organisms including humans. The green synthesis of nanoparticles begins a new generation of safe nanotechnology with valuable applications in industry, biomedicine, agriculture, and environmental cleanup.

Keywords

Nanoparticles Biosynthesis Mechanisms Bacteria Protozoans Viruses Yeasts Fungi Algae Plants 

References

  1. Abboud Y, Saffaj T, Chagraoui A, Bouari AE, Brouzi K, Tanane O et al (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576CrossRefGoogle Scholar
  2. Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87Google Scholar
  3. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2013) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:3029–3039CrossRefGoogle Scholar
  4. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2018) Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci:1–9.  https://doi.org/10.1016/j.sjbs.2018.01.007PubMedCrossRefGoogle Scholar
  5. Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1:1582–1592Google Scholar
  6. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  7. Ahmad A, Senapati S, Khan MI, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  8. Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int:1–8.  https://doi.org/10.4061/2011/454090 CrossRefGoogle Scholar
  9. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces 107:227–234PubMedCrossRefGoogle Scholar
  10. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28PubMedCrossRefGoogle Scholar
  11. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Equip 29:221–236CrossRefGoogle Scholar
  12. Aljabali AAA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al Trad B, Alrob OA et al (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8:1–17CrossRefGoogle Scholar
  13. Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025PubMedCrossRefGoogle Scholar
  14. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694PubMedPubMedCentralCrossRefGoogle Scholar
  15. Anjum S, Abbasi BH, Shinwari ZK (2016) Plant-mediated green synthesis of silver nanoparticles for biomedical applications: challenges and opportunities. Pak J Bot 48:1731–1760Google Scholar
  16. Ankamwar B, Chaudhary M, Sastry M (2005a) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org NanoMet Chem 35:19–26CrossRefGoogle Scholar
  17. Ankamwar B, Damle C, Ahmad A, Sastry M (2005b) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671PubMedCrossRefGoogle Scholar
  18. Attia YA, Farag YE, Mohamed YMA, Hussien AT, Youssef T (2016) Photo-extracellular synthesis of gold nanoparticles using Baker’s yeast and their anticancer evaluation against Ehrlich ascites carcinoma cells. New J Chem 40:9395–9402CrossRefGoogle Scholar
  19. Azandehi PK, Moghaddam J (2015) Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia Vahl extract. Particuology 19:22–26CrossRefGoogle Scholar
  20. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticle:689419.  https://doi.org/10.1155/2014/689419CrossRefGoogle Scholar
  21. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefGoogle Scholar
  22. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  23. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.  https://doi.org/10.3389/fchem.2019.00065
  24. Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS et al (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2145PubMedPubMedCentralCrossRefGoogle Scholar
  25. Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, Silva RM, Udagama PV (2017) Honey mediated green synthesis of nanoparticles: new era of safe nanotechnology. J Nanomater 1:1–10CrossRefGoogle Scholar
  26. Balci S, Bittner AM, Hahn K, Scheu C, Knez M, Kadri A et al (2006) Copper nanowires within the central channel of tobacco mosaic virus particles. Eletrochim Acta 51:6251–6357CrossRefGoogle Scholar
  27. Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:1–10CrossRefGoogle Scholar
  28. Bansal P, Duhan JS, Gahlawat SK (2014) Biogenesis of nanoparticles: a review. Afr J Biotechnol 13:2778–2785CrossRefGoogle Scholar
  29. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139CrossRefGoogle Scholar
  30. Barcikowski S, Devesa F, Moldenhauer K (2009) Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J Nanopart Res 11:1883–1893CrossRefGoogle Scholar
  31. Baron S (1996) Medical microbiology. University of Texas Medical Branch at Galveston, Galveston, TXGoogle Scholar
  32. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J et al (2008) Self-supported silver nanoparticles containing bacterial cellulose membrane. Mater Sci Eng C 28:515–518CrossRefGoogle Scholar
  33. Bell J, Chen Z, Olofinjana A (2001) Synthesis of amorphous carbon nitride using reactive ion beam sputtering deposition with grazing bombardment. Diam Relat Mater 10:2184–2189CrossRefGoogle Scholar
  34. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887PubMedPubMedCentralGoogle Scholar
  35. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327PubMedCrossRefGoogle Scholar
  36. Bhattacharya D, Singh S, Satnalika N (2009) Nanotechnology, big things from a tiny world: a review. Int J Sci Technol 2:29–38Google Scholar
  37. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319Google Scholar
  38. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  39. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefGoogle Scholar
  40. Boroumand MA, Namvar F, Moniri M, Tahir MP, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565CrossRefGoogle Scholar
  41. Bromley KM, Patil AJ, Perriman AW, Stubbs G, Mann S (2008) Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem 18:4796–4801CrossRefGoogle Scholar
  42. Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2010) Soil and groundwater cleanup: benefits and limits of emerging technologies: a review. Clean Techn Environ Policy 13:241–268CrossRefGoogle Scholar
  43. Chung IM, Park I, Hyun KS, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:1–14CrossRefGoogle Scholar
  44. Cui YH, Lili L, Zhou NQ, Liu JH, Wang HJ, Tian J et al (2016) In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzym Microb Technol 95:185–191CrossRefGoogle Scholar
  45. Dahoumane SA, Mechouet M, Alvarez FJ, Agathos SN, Jeffryes C (2016) Microalgae: an outstanding tool in nanotechnology. Bionatura 1:196–201CrossRefGoogle Scholar
  46. Dahoumane SA, Jeffryes C, Mechouet M, Agathos SN (2017a) Biosynthesis of inorganic nanoparticles: a fresh look at the control os shape, size and composition. Bioengineering 4:1–16CrossRefGoogle Scholar
  47. Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski DA et al (2017b) Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review. Green Chem 19:552–587CrossRefGoogle Scholar
  48. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  49. Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17:5720–5725CrossRefGoogle Scholar
  50. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199PubMedCrossRefGoogle Scholar
  51. Dhas TS, Kumar VG, Karthick V, Angel KJ, Govindaraju K (2014) Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A 120:416–420CrossRefGoogle Scholar
  52. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155CrossRefGoogle Scholar
  53. Dubey M, Bhadauria S, Kushwah B (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543Google Scholar
  54. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  55. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organisation of metallic nanoparticles using Tobacco mosaic virus. Nano Lett 3:413–417CrossRefGoogle Scholar
  56. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Physicochem Eng Aspects 369:27–33CrossRefGoogle Scholar
  57. Elrahman SHA, Mostafa MAM (2015) Applications of nanotechnology in agriculture: an overview. Egypt J Soil Sci 55:1–19CrossRefGoogle Scholar
  58. Evans P, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3:577PubMedCrossRefGoogle Scholar
  59. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647CrossRefGoogle Scholar
  60. Fulekar MH, Pathak B (2017) Environmental nanotechnology. CRC Press, New YorkCrossRefGoogle Scholar
  61. Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:1–5CrossRefGoogle Scholar
  62. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  63. Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S et al (2011) Synthesis of gold nano-anisotrops using Dioscorea bulbifera tuber extract. J Nanomater 8:1–8CrossRefGoogle Scholar
  64. Glaser JA (2012) Green chemistry with nanocatalysts. Clean Techn Environ Policy 14:513–520CrossRefGoogle Scholar
  65. Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A (2015) Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostruct Chem 5:295–303CrossRefGoogle Scholar
  66. Govindaraju K, Kiruthiga V, Ganesh Kumar V, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501PubMedCrossRefGoogle Scholar
  67. Gow NAR, Gadd GM (1994) The growing fungus. Chapman & Hall, LondonGoogle Scholar
  68. Guo Z, Liang X, Pereira T, Scaffaro R, Hahn HT (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67:2036–2044CrossRefGoogle Scholar
  69. Harris AT, Bali R (2007) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695CrossRefGoogle Scholar
  70. Haverkamp RG, Marshall AT, van Agterveld D (2006) Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. J Nanopart Res 9:697–700CrossRefGoogle Scholar
  71. Hesgazy HS, Lamis D, Shabaan GH, Rabie GH, Diana SR (2015) Biosynthesis of silver nanoparticles using cell free callus exudates of Medicago sativa L. Pak J Bot 47:1825–1829Google Scholar
  72. Hou L, Tong D, Jiang Y, Gao F (2014) Synthesis and organization of platinum nanoparticles and nanoshells on a native virus bioscaffold. Nano Brief Rep Rev 9:1–8Google Scholar
  73. Husseiney MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003–1006CrossRefGoogle Scholar
  74. Itohara D, Shinohara K, Yoshida T, Fujita Y (2016) p-channel and n-channel thin-film-transistor operation on sprayed ZnO nanoparticle layers. J Nanomater:1–6  https://doi.org/10.1155/2016/8219326 CrossRefGoogle Scholar
  75. Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces 81:430–433PubMedCrossRefGoogle Scholar
  76. Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Bios 3:1–8Google Scholar
  77. Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19:661–666CrossRefGoogle Scholar
  78. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306CrossRefGoogle Scholar
  79. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682–689.  https://doi.org/10.1007/s10971-018-4666-2CrossRefGoogle Scholar
  80. Juganson K, Mortimer M, Ivask A, Kasemets K, Kahru A (2013) Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. Environ Sci 15:244–250Google Scholar
  81. Kaduková J, Velgosová O, Mrazíková A, Marcincákivá R (2014) The effect of culture age and initial silver concentration on biosynthesis of Ag nanoparticles. N Biotechnol Chim 13:28–37Google Scholar
  82. Kalishwaralal K, Deepak V, Ram S, Pandian K, Muniasamy K, Kanth SBM et al (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262PubMedCrossRefGoogle Scholar
  83. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus Nigrospora oryzae. PLoS ONE 9(1):e84693.  https://doi.org/10.1371/journal.pone.0084693 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kathiraven T, Sundaramanickam A, Shanmugan N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5:499–504CrossRefGoogle Scholar
  85. Kaviya SSJ, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol. J Nanotech:1–5.  https://doi.org/10.1155/2011/152970 CrossRefGoogle Scholar
  86. Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493Google Scholar
  87. Khan I, Farhan M, Pratichi S, Thiagarajan P (2014) Nanotechnology for environmental remediation. Res J Pharm Biol Chem Sci 5:1916–1927Google Scholar
  88. Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioprocess 2:19CrossRefGoogle Scholar
  89. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614PubMedPubMedCentralCrossRefGoogle Scholar
  90. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20PubMedCrossRefGoogle Scholar
  91. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Kooi S et al (2002) Electrochemical modification of individual nano-objects. J Electroanal Chem 522:70–74CrossRefGoogle Scholar
  92. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiβ E et al (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3:1079–1082CrossRefGoogle Scholar
  93. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP et al (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124CrossRefGoogle Scholar
  94. Knez M, Kadri A, Wege C, Gosele U, Jeske H, Nielsch K (2006) Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin. Nano Lett 6:1172–1177PubMedCrossRefGoogle Scholar
  95. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192CrossRefGoogle Scholar
  96. Kosmala A, Wright R, Zhang Q, Kirby P (2011) Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater Chem Phys 129:1075–1080CrossRefGoogle Scholar
  97. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588PubMedCrossRefGoogle Scholar
  98. Kowshik M, Ashtaputre S, Kulkani SK, Parknikar KMM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  99. Krishnaraj C, Jagan EG, Rajasekar S (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56PubMedCrossRefGoogle Scholar
  100. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758PubMedCrossRefGoogle Scholar
  101. Kumar D, Karthik L, Kumar G, Roa KB (2011) Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline 3:1100–1111Google Scholar
  102. Lachance MA (2016) Paraphyly and (yeast) classification. Int J Syst Evol Microbiol 66:4924–4929PubMedCrossRefGoogle Scholar
  103. Lacour F, Guillois O, Portier X, Perez H, Herlin N, Reynaud C (2007) Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E: Low Dimens Syst Nanostruct 38:11–15CrossRefGoogle Scholar
  104. Lee LA, Niu Z, Wang Q (2009) Viruses and virus-like protein assemblies chemically programmable nanoscale building blocks. Nano Res 2:349–364CrossRefGoogle Scholar
  105. Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanism of gold bioaccumulation by filamentous cyanobacteria form gold (III) – chloride complex. Environ Sci Technol 40:6304–6309PubMedCrossRefGoogle Scholar
  106. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278PubMedCrossRefGoogle Scholar
  107. Li Y, Liang J, Tao Z, Chen J (2007) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43:2380–2385CrossRefGoogle Scholar
  108. Li X, Chen S, Hu W, Shi S, Shen W, Zhang X et al (2009) In situ synthesis of CDS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512CrossRefGoogle Scholar
  109. Lim HA, Mishra A, Yun SI (2011) Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae. J Nanosci Nanotechnol 11:518–522PubMedCrossRefGoogle Scholar
  110. Lirdprapamongkol K, Warisnoicharoen W, Soisuwas S, Svati J (2014) Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci 7:1038–1104CrossRefGoogle Scholar
  111. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology. W. H. Freeman and Company, New YorkGoogle Scholar
  112. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol:1–14.  https://doi.org/10.1155/2014/843687 CrossRefGoogle Scholar
  113. Love AJ, Makarov V, Yaminsky I, Kalinina NO, Taliansky ME (2014) The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 449:133–139PubMedCrossRefGoogle Scholar
  114. Mädler L, Kammler HK, Mueller R, Pratsinis SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389CrossRefGoogle Scholar
  115. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology, and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  116. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G et al (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S A 100:6946–6951PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A et al (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217PubMedCrossRefGoogle Scholar
  118. Marshall M, Beliaev A, Dohnalkova A, David W, Shi L, Wang Z (2007) C-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:1324–1333Google Scholar
  119. Mewada A, Oza G, Pandey S, Sharon M (2012) Extracellular synthesis of gold using Pseudomonas denitrificans and comprehending its stability, vol 2, pp 493–499Google Scholar
  120. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167CrossRefGoogle Scholar
  121. Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248PubMedCrossRefGoogle Scholar
  122. Mishra PM, Sahoo SK, Naik GK, Parida N (2015) Biomimetic synthesis, characterization and mechanism of formation of stable silver nanoparticles using Averrhoa carambola L. leaf extract. Mater Lett 160:566–571CrossRefGoogle Scholar
  123. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefGoogle Scholar
  124. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  125. Murphy CJ (2002) Materials science: nanocubes and nanoboxes. Science 298:2139–2141PubMedCrossRefGoogle Scholar
  126. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design 2:293–298CrossRefGoogle Scholar
  127. Namasivayam SKR, Avimanyu B (2011) Silver nanoparticle synthesis from Lecanicillium lecanii and evolutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Pharm Sci 3:190–195Google Scholar
  128. Namba K, Stubbs G (1986) Structure of tobacco mosaic virus at 3.6 a resolution: implications for assembly. Science 231:1401–1406PubMedCrossRefGoogle Scholar
  129. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  130. Nayak D, Pradhan S, Ashe S, Rauta PR, Nayak B (2015) Biologically synthesized silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J Colloid Interface Sci 457:329–338PubMedCrossRefGoogle Scholar
  131. Nazeruddin G, Prasad N, Waghmare S, Garadkar K, Mulla I (2014) Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. J Alloys Compd 583:272–277CrossRefGoogle Scholar
  132. Nealson KH, Scott J (2006) Ecophysiology of the genus Shewanella prokaryotes. Appl Environ Microbiol 6:1133–1151Google Scholar
  133. Nezamdoost T, Bagherieh-Najjar MB, Aghdasi M (2014) Biogenic synthesis of stable bioactive silver chloride nanoparticles using Onosma dichroantha Boiss. Root extract. Mater Lett 137:225–228CrossRefGoogle Scholar
  134. Nissinen T, Ikonen T, Lama M, Riikonen J, Lehto VP (2016) Improved production efficiency of mesoporous silicon nanoparticles by pulsed electrochemical etching. Powder Technol 288:360–365CrossRefGoogle Scholar
  135. O’Brien S, Brus L, Murray CB (2001) Synthesis of monodisperse nanoparticles of barium titanite: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 123:12085–12086PubMedCrossRefGoogle Scholar
  136. Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE (2015) Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. J Nanopart Res 264:1–17Google Scholar
  137. Oscar L, Bakkiyaraj D, Nithya C, Thajuddin N (2014) Deciphering the diversity of microalgal bloom in wastewater – an attempt to construct potential consortia for bioremediation. JCPAM 3:92–96Google Scholar
  138. Oscar FL, Vismaya S, Arunkumar M, Thajuddin N, Dhanasekaran D, Nithya C (2016) Algal nanoparticles: synthesis and biotechnological potentials. INTECH 7:157–182Google Scholar
  139. Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A 136:1175–1180CrossRefGoogle Scholar
  140. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:1–10CrossRefGoogle Scholar
  141. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4:45–50Google Scholar
  142. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914PubMedCrossRefGoogle Scholar
  143. Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977–9984CrossRefGoogle Scholar
  144. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43PubMedCrossRefGoogle Scholar
  145. Pradhan N, Singh S, Ojha N, Srivastava A, Barla A, Rai V et al (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int:1–17.  https://doi.org/10.1155/2015/365672 CrossRefGoogle Scholar
  146. Prakash A, Seema S, Ahmad N, Ghosh A, Sinha P (2010) Bacterial mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol 1:71–79Google Scholar
  147. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle:963961.  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  148. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. ISBN:978-3-319-42989-2CrossRefGoogle Scholar
  149. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer, Cham. ISBN:978-3-319-68423-9CrossRefGoogle Scholar
  150. Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342:68–72PubMedCrossRefGoogle Scholar
  151. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticle.  https://doi.org/10.1155/2013/431218CrossRefGoogle Scholar
  152. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250PubMedCentralCrossRefGoogle Scholar
  153. Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, Kaliaperumal SK (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol 9(54):8122–8130Google Scholar
  154. Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharm Bio Sci 3(4):745–752Google Scholar
  155. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  156. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  157. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014
  158. Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)Google Scholar
  159. Prasad R, Kumar V, Kumar M (2017c) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)Google Scholar
  160. Prasad R, Jha A, Prasad K (2018a) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0). https://www.springer.com/978-3-319-99570-0
  161. Prasad R, Kumar V, Kumar M, Shanquan W (2018b) Fungal nanobionics: principles and applications. Springer, Singapore. ISBN: 978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656
  162. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178CrossRefGoogle Scholar
  163. Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. CAB, New YorkGoogle Scholar
  164. Rajakumar G, Rahuman A, Roopan SM, Khanna VG, Elango G, Kamaraj C et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29PubMedCrossRefGoogle Scholar
  165. Rajaram K, Aiswarya DC, Sureshkumar P (2015) Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Mater Lett 138:251–254CrossRefGoogle Scholar
  166. Rajesh S, Raja DP, Rathi JM, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119–128Google Scholar
  167. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2013a) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. IJNN 3:21–25Google Scholar
  168. Rajeshkumar S, Malarkodi C, Vanaja M, Gnanajobitha G, Paulkumar K, Kannan C et al (2013b) Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Pharma Chem 5:224–229Google Scholar
  169. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L). Agric Res 2:48–57CrossRefGoogle Scholar
  170. Raliya R, Rathore I, Tarafdar JC (2013) Development of microbial nanofactory for zinc, magnesium, and titanium nanoparticles production using soil fungi. J Bionanosci 7:590–596CrossRefGoogle Scholar
  171. Ramezani F, Jebali A, Kazemi B (2012) A green approach for synthesis of gold and silver nanoparticles by Leishmania sp. Appl Biochem Biotechnol 168:1549–1555PubMedCrossRefGoogle Scholar
  172. Reddy NJ, Vali DN, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C 34:115–122CrossRefGoogle Scholar
  173. Renugadevi K, Aswini RV (2012) Microwave irradiation assisted synthesis of silver nanoparticles using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomater Biostruct 2:5–10Google Scholar
  174. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct 5:887–895Google Scholar
  175. Sahayaraj K, Rajesh S, Rathi JM (2012) Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig J Nanomater Biostruct 7:1557–1567Google Scholar
  176. Salvadori MR, Lepre LF, Ando RA, Nascimento CAO, Corrêa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS One 8:1–8CrossRefGoogle Scholar
  177. Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2014a) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:1–9CrossRefGoogle Scholar
  178. Salvadori MR, Ando RA, do Nascimento CAO, Corrêa B (2014b) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1286–1295PubMedCrossRefGoogle Scholar
  179. Salvadori MR, Nascimento CAO, Corrêa B (2014c) Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep 4:1–6Google Scholar
  180. Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 5:1–15Google Scholar
  181. Salvadori MR, Ando RA, Muraca D, Knobel M, Nascimento CAO, Corrêa B (2016) Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv 6:60683–60692CrossRefGoogle Scholar
  182. Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2017) Dead biomass of Amazon yeasts: a new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:1112–1120PubMedCrossRefGoogle Scholar
  183. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 73–97Google Scholar
  184. Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomater Biostruct 5:491–496Google Scholar
  185. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy S, Yun YS (2009a) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171:400–404PubMedCrossRefGoogle Scholar
  186. Sathishkumar M, Sneha K, Won S, Cho CW, Kim S, Yun YS (2009b) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73:332–338PubMedCrossRefGoogle Scholar
  187. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432Google Scholar
  188. Saxena J, Sharma MM, Gupta S, Singha A (2014) Emerging role of fungi in nanoparticle synthesis and their applications. J Pharm Pharm Sci 3:1586–1613Google Scholar
  189. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923CrossRefGoogle Scholar
  190. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  191. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRefGoogle Scholar
  192. Sharma B, Purkayastha DD, Hazra S, Thajamanbi M, Bhat-tacharjee CR, Ghosh NN et al (2014) Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst Eng 37:2559–2565PubMedCrossRefGoogle Scholar
  193. Sharma A, Sharma S, Sharma K, Chetri SPK, Vashishtha A, Singh P et al (2015) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28:1–16CrossRefGoogle Scholar
  194. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  195. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotubes composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256CrossRefGoogle Scholar
  196. Shetty P, Supraja N, Garud M, Prasad TNVKV (2014) Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles. J Nanostruct Chem 4:161–170CrossRefGoogle Scholar
  197. Shiying H, Zhirui G, Zhanga Y, Zhanga S, Wanga J, Ning G (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  198. Shukla MK, Singh RP, Reddy CRK, Jha B (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300PubMedCrossRefGoogle Scholar
  199. Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 363:1–11Google Scholar
  200. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1–7Google Scholar
  201. Skalickova S, Baron M, Sochor J (2017) Nanoparticles biosynthesized by yeast: a review of their application. Kvasny Prum 63:290–292CrossRefGoogle Scholar
  202. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164PubMedCrossRefGoogle Scholar
  203. Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2016) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5:2–9Google Scholar
  204. Sreejivungsa K, Suchaichit N, Moosophon P, Chompoosor A (2016) Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. J Nanomater:1–7.  https://doi.org/10.1155/2016/4964693 CrossRefGoogle Scholar
  205. Sreekanth TV, Ravikumar S, Eom IY (2014) Green synthesized silver nanoparticles using Nelumbo nucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities. J Photochem Photobiol B 141:100–105PubMedCrossRefGoogle Scholar
  206. Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97:1167–1173PubMedCrossRefGoogle Scholar
  207. Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356CrossRefGoogle Scholar
  208. Sundaram AP, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17:835–840CrossRefGoogle Scholar
  209. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59Google Scholar
  210. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A Mol Biomol Spectrosc 151:939–944PubMedCrossRefGoogle Scholar
  211. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G et al (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559CrossRefGoogle Scholar
  212. Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus F. oxysporum and their anti-bacterial activity. Spectrochim Acta A 106:41–47CrossRefGoogle Scholar
  213. Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol 3:397–401PubMedCrossRefGoogle Scholar
  214. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential application in biotechnology. Curr Sci 89:47–57Google Scholar
  215. Tian X, He W, Cui J, Zhang X, Zhou W, Yan S et al (2010) Mesoporous zirconium phosphate from yeast biotemplate. J Colloid Interface Sci 343:344–349PubMedCrossRefGoogle Scholar
  216. Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4:99–106CrossRefGoogle Scholar
  217. Velusamy P, Kumar GV, Jeyanthi JD, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102PubMedPubMedCentralCrossRefGoogle Scholar
  218. Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nanocrystalline silver dressing on burns: a study of systemic silver absorption. Burns 33:979–985PubMedCrossRefGoogle Scholar
  219. Yan S, He W, Sun C, Zhang X, Zhao H, Li Z et al (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 80:254–258CrossRefGoogle Scholar
  220. Yi G, Wu Z, Sayer M (1988) Preparation of Pb (Zr, Ti) O3 thin films by sol gel processing: electrical, optical, and electro-optic properties. J Appl Phys 64:2717–2724CrossRefGoogle Scholar
  221. Yong P, Rowsen NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379PubMedCrossRefGoogle Scholar
  222. Yousefzadi M, Rahimi Z, Ghafori V (2014) The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J Agardh. Mater Lett 137:1–4CrossRefGoogle Scholar
  223. Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112CrossRefGoogle Scholar
  224. Yuan J, Cen Y, Kong XJ, Shuang W, Liu CL, Yu RQ et al (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 19:10548–10555CrossRefGoogle Scholar
  225. Zhang X, He X, Wang K, Wang Y, Li H, Tan W (2009) Biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. J Nanosci Nanotechnol 9:5738–5744PubMedCrossRefGoogle Scholar
  226. Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K et al (2011) Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomed 6:2899–2906CrossRefGoogle Scholar
  227. Zhang P, Wei R, Zeng J, Cai M, Xiao J, Yang D (2016) Thermal properties of silver nanoparticle sintering bonding paste for high-power led packaging. J Nanomater 2016:1–6Google Scholar
  228. Zhao Y, Yeh Y, Liu R, You J, Qu F (2015a) Facile deposition of gold nanoparticles on core–shell Fe3O4@polydopamine as recyclable nanocatalyst. Solid State Sci 45:9–14CrossRefGoogle Scholar
  229. Zhao Y, Zheng Y, Zhao C, You J, Qu F (2015b) Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 71:200–206PubMedCrossRefGoogle Scholar
  230. Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors Actuators B Chem 148:247–252CrossRefGoogle Scholar
  231. Zhou W, He W, Zhang X, Yan S, Sun X, Han X (2009a) Biosynthesis of iron phosphate nanopowders. Powder Technol 194:106–108CrossRefGoogle Scholar
  232. Zhou W, He W, Zhong S, Wang Y, Zhao H, Li Z et al (2009b) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321:1025–1028CrossRefGoogle Scholar
  233. Zhou JC, Soto CM, Chen MS, Bruckman MA, Moore MH, Barry E et al (2012) Biotemplating rod-like viruses for the synthesis of copper nanorods and nanowires. J Nanobiotechnology 10:1–12CrossRefGoogle Scholar
  234. Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci Iran 18:1631–1635CrossRefGoogle Scholar
  235. Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mater Lett 123:156–159CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Biomedical Institute-IIUniversity of São PauloSão PauloBrazil

Personalised recommendations