Advertisement

Polymeric Nanoparticles in Foods

  • Ricardo M. González-Reza
  • María L. Zambrano-Zaragoza
  • Humberto Hernández-Sánchez
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nowadays, nanotechnology presents great advances in different areas of knowledge, among which food science stands out. Its impact lies in the efficiency it represents over the increase of the useful life of the food, there being evidence of this in studies of the application of different nanostructured systems in different food products. In this sense, polymeric nanoparticles have a great advantage over other nanostructures, since they are specific carriers of high impact substances (hydrophilic and lipophilic), such as antioxidants and antimicrobials, in addition to presenting controlled release of said substances. This chapter presents a review of the state of the art as well as novel studies in vitro (i.e. encapsulation of antioxidants, antimicrobials and colorants) and in situ (i.e. browning inhibitors, antimicrobials agents and controlled release systems) of polymeric nanoparticles with specific applications in food science. The importance of the forming polymers, the substances that can be encapsulated as well as general aspects of the controlled release that characterizes the polymeric nanostructures is analyzed.

Keywords

Nanocapsules Nanospheres Controlled release Antioxidants Antimicrobials 

References

  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15.  https://doi.org/10.1016/j.cocis.2008.01.002CrossRefGoogle Scholar
  2. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126.  https://doi.org/10.1016/S1466-8564(02)00012-7CrossRefGoogle Scholar
  3. Carocho M, Morales P, Ferreira ICFR (2018) Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol 71:107–120.  https://doi.org/10.1016/j.tifs.2017.11.008CrossRefGoogle Scholar
  4. Chen F, Shi Z, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39.  https://doi.org/10.1002/bit.22363CrossRefPubMedGoogle Scholar
  5. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784CrossRefGoogle Scholar
  6. Đorđević V, Balanč B, Belščak-Cvitanović A, Lević S, Trifković K, Kalušević A, Kostić I, Komes D, Bugarski B, Nedović V (2014) Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng Rev 7:452–490CrossRefGoogle Scholar
  7. dos Santos PP, Paese K, Guterres SS, Pohlmann AR, Costa TH, Jablonski A, Flôres SH, Rios A de O (2015) Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. J Nanopart Res 17:1–11.  https://doi.org/10.1007/s11051-015-2917-5CrossRefGoogle Scholar
  8. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24.  https://doi.org/10.1016/j.jcis.2011.07.017CrossRefPubMedGoogle Scholar
  9. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691.  https://doi.org/10.1016/j.ijpharm.2017.06.052CrossRefPubMedGoogle Scholar
  10. Esmaeili A, Gholami M (2015) Optimization and preparation of nanocapsules for food applications using two methodologies. Food Chem 179:26–34.  https://doi.org/10.1016/j.foodchem.2015.01.115CrossRefPubMedGoogle Scholar
  11. Galindo-Pérez MJ, Quintanar-Guerrero D, de los Ángeles Cornejo-Villegas M, de la Luz Zambrano-Zaragoza M (2018) Optimization of the emulsification-diffusion method using ultrasound to prepare nanocapsules of different food-core oils. LWT – Food Sci Technol 87:333–341.  https://doi.org/10.1016/j.lwt.2017.09.008CrossRefGoogle Scholar
  12. González-Reza RM, Quintanar-Guerrero D, Del Real-López A, Piñon-Segundo E, Zambrano-Zaragoza ML (2018) Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. LWT – Food Sci Technol 90:354–361.  https://doi.org/10.1016/j.lwt.2017.12.044CrossRefGoogle Scholar
  13. González-Reza RM, Quintanar-Guerrero D, Flores-Minutti JJ, Gutiérrez-Cortez E, Zambrano-Zaragoza ML (2015) Nanocapsules of β-carotene: thermal degradation kinetics in a scraped surface heat exchanger (SSHE). LWT – Food Sci Technol 60:124–130.  https://doi.org/10.1016/j.lwt.2014.09.020CrossRefGoogle Scholar
  14. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, Langer R (2012) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 64:316–326.  https://doi.org/10.1016/j.addr.2012.09.008CrossRefGoogle Scholar
  15. Han HJ, Lee JS, Park SA, Ahn JB, Lee HG (2015) Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surfaces B Biointerfaces 130:93–100.  https://doi.org/10.1016/j.colsurfb.2015.03.050CrossRefPubMedGoogle Scholar
  16. Hernández-Sánchez H, Gutiérrez-López GF (2015) Food Nanoscience and nanotechnology. Springer, New YorkCrossRefGoogle Scholar
  17. Khan I, Tango CN, Miskeen S, Oh DH (2018) Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive. Carbohydr Polym 184:100–107.  https://doi.org/10.1016/j.carbpol.2017.11.034CrossRefPubMedGoogle Scholar
  18. Lee JS, Hong DY, Kim ES, Lee HG (2017) Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surfaces B Biointerfaces 154:171–177.  https://doi.org/10.1016/j.colsurfb.2017.03.004CrossRefPubMedGoogle Scholar
  19. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, Wan X (2017) Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem 231:19–24.  https://doi.org/10.1016/j.foodchem.2017.02.106CrossRefPubMedGoogle Scholar
  20. McClements DJ (2015) Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interf Sci 219:27–53.  https://doi.org/10.1016/j.cis.2015.02.002CrossRefGoogle Scholar
  21. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142.  https://doi.org/10.1016/j.ijpharm.2009.10.018CrossRefPubMedGoogle Scholar
  22. Nedovic V, Kalusevic A, Manojlovi V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815.  https://doi.org/10.1016/j.profoo.2011.09.265CrossRefGoogle Scholar
  23. Noronha CM, De Carvalho SM, Lino RC, Barreto PLM (2014) Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem 159:529–535.  https://doi.org/10.1016/j.foodchem.2014.02.159CrossRefPubMedGoogle Scholar
  24. Noronha CM, Granada AF, de Carvalho SM, Lino RC, Matheus MV, Barreto PLM (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crop Prod 50:896–903.  https://doi.org/10.1016/j.indcrop.2013.08.015CrossRefGoogle Scholar
  25. Özkan G, Bilek SE (2014) Microencapsulation of natural food colourants. Int J Nutr Food Sci 3:145–156.  https://doi.org/10.11648/j.ijnfs.20140303.13CrossRefGoogle Scholar
  26. Pathakoti K, Manubolu M, Hwang HM (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25:245–253.  https://doi.org/10.1016/j.jfda.2017.02.004CrossRefPubMedGoogle Scholar
  27. Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75–81.  https://doi.org/10.1016/j.jconrel.2014.06.041CrossRefPubMedGoogle Scholar
  28. Pereira MC, Oliveira DA, Hill LE, Zambiazi RC, Borges CD, Vizzotto M, Mertens-Talcott S, Talcott S, Gomes CL (2018) Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem 240:396–404.  https://doi.org/10.1016/j.foodchem.2017.07.144CrossRefPubMedGoogle Scholar
  29. Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK (2018) Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89:1–11.  https://doi.org/10.1016/j.foodcont.2018.01.018CrossRefGoogle Scholar
  30. Prasad R, Kumar M, Kumar V (2017a) Nanotechnology: an agriculture paradigm. Springer Nature Singapore (ISBN: 978-981-10-4573-8)Google Scholar
  31. Prasad R, Kumar V, Kumar M (2017b) Nanotechnology: food and environmental paradigm. Springer Nature Singapore (ISBN 978-981-10-4678-0)Google Scholar
  32. Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, Chanona-Pérez JJ, Alamilla-Beltrán L, Jimenéz-Aparicio A, Gutiérrez-López GF (2010) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2:39–50.  https://doi.org/10.1007/s12393-009-9012-6CrossRefGoogle Scholar
  33. Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Nanotechnologies Food Agric:1–347.  https://doi.org/10.1007/978-3-319-14024-7Google Scholar
  34. Saloko S, Darmadji P, Setiaji B, Pranoto Y (2014) Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Biosci 7:71–79.  https://doi.org/10.1016/j.fbio.2014.05.008CrossRefGoogle Scholar
  35. Sechi M, Syed DN, Pala N, Mariani A, Marceddu S, Brunetti A, Mukhtar H, Sanna V (2016) Nanoencapsulation of dietary flavonoid fisetin: formulation and in vitro antioxidant and α-glucosidase inhibition activities. Mater Sci Eng C 68:594–602.  https://doi.org/10.1016/j.msec.2016.06.042CrossRefGoogle Scholar
  36. Sekhon BS (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3:1–15.  https://doi.org/10.2147/NSA.S8677CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shahidi F (2000) Antioxidants in food and food antioxidants. Mol Nutr Food Res 44:158–163.  https://doi.org/10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-LCrossRefGoogle Scholar
  38. Shin GH, Kim JT, Park HJ (2015) Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 46:1–14.  https://doi.org/10.1016/j.tifs.2015.07.005CrossRefGoogle Scholar
  39. Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174.  https://doi.org/10.1016/j.addr.2012.09.028CrossRefGoogle Scholar
  40. Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418:6–12.  https://doi.org/10.1016/j.ijpharm.2011.03.051CrossRefPubMedGoogle Scholar
  41. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23.  https://doi.org/10.1016/j.ijpharm.2004.01.044CrossRefPubMedGoogle Scholar
  42. Sotelo-Boyás ME, Correa-Pacheco ZN, Bautista-Baños S, Corona-Rangel ML (2017) Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT – Food Sci Technol 77:15–20.  https://doi.org/10.1016/j.lwt.2016.11.022CrossRefGoogle Scholar
  43. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:1–10.  https://doi.org/10.1111/j.1750-3841.2006.00195.xCrossRefGoogle Scholar
  44. Zambrano-Zaragoza ML, Mercado-Silva E, Del Real LA, Gutiérrez-Cortez E, Cornejo-Villegas MA, Quintanar-Guerrero D (2014) The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red delicious” apples. Innov Food Sci Emerg Technol 22:188–196.  https://doi.org/10.1016/j.ifset.2013.09.008CrossRefGoogle Scholar
  45. Zambrano-Zaragoza ML, Mercado-Silva E, Gutiérrez-Cortez E, Castaño-Tostado E, Quintanar-Guerrero D (2011) Optimization of nanocapsules preparation by the emulsion-diffusion method for food applications. LWT – Food Sci Technol 44:1362–1368.  https://doi.org/10.1016/j.lwt.2010.10.004CrossRefGoogle Scholar
  46. Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Real A, Piñon-Segundo E, Zambrano-Zaragoza JF (2017) The release kinetics of β-carotene nanocapsules/xanthan gum coating and quality changes in fresh-cut melon (cantaloupe). Carbohydr Polym 157:1874–1882.  https://doi.org/10.1016/j.carbpol.2016.11.075CrossRefPubMedGoogle Scholar
  47. Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, Pardo H (2018) Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT – Food Sci Technol 91:107–116.  https://doi.org/10.1016/j.lwt.2018.01.015CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ricardo M. González-Reza
    • 1
  • María L. Zambrano-Zaragoza
    • 2
  • Humberto Hernández-Sánchez
    • 1
  1. 1.Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Ingeniería BioquímicaMexico CityMexico
  2. 2.Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Laboratorio de Procesos de Transformación y Tecnologías Emergentes de AlimentosCuautitlán IzcalliMexico

Personalised recommendations