Advertisement

Potential of Biogenic Plant-Mediated Iron and Iron Oxide Nanoparticles and Their Utility

  • Ravindra Pratap Singh
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Plant nanobionics is a new field of science or bioengineering in which nanostructured material is inserted into living plant cells, in turn changing the functioning of the plant tissue or organelle; in other words, plant nanobionics describes superpowered plants, including plants that can detect explosives at extreme temperatures, plants that can detect heavy metals in vegetables and fruits, an array of wild-type plants capable of imaging objects in their environment, self-powered light sources, infrared communication devices, and self-powered nanosensors to detect toxicants/pathogens. Genetic or structural modifications of plants may also make them capable of detecting pollutants, i.e., for bioremediation. Biogenic synthesis and applications of coated and uncoated iron and iron oxide nanoparticles have been established. The magnetic properties of both types of nanoparticles have been used in the treatment of cancer, in drug delivery, as magnetic resonance imaging agents, for catalysis, for detection of toxicants/pollutants, and for removal of pesticides from potable water. Polymer-coated iron and iron oxide nanoparticles have good biocompatibility and slow release, and are effective and long lasting. The biological efficacy of both types of nanoparticles is dependent on their shape, size, and orientation, as well as their concentration.

Keywords

Iron nanoparticles Iron oxide nanoparticles Nanomaterials Plant nanobionics Nanosensors Nanobiotechnology Self-powering plants and bioengineering 

Notes

Acknowledgements

The author thanks Indira Gandhi National Tribal University (IGNTU), Amarkantak, Madhya Pradesh, India, for providing facilities to prepare this chapter.

References

  1. Abdullah NH, Shameli K, Abdullah EC, Abdullah LC (2017) A facile and green synthetic approach toward fabrication of starch stabilized magnetite nanoparticles. Chin Chem Lett 28:1590–1596CrossRefGoogle Scholar
  2. Abedini A, Daud AR, Hamid MAA, Othman NK (2014) Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties. PLoS One 9:90055CrossRefGoogle Scholar
  3. Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine 7:511–526PubMedPubMedCentralGoogle Scholar
  4. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648PubMedPubMedCentralGoogle Scholar
  5. Ali A, AlSalhi MS, Atif M, Ansari AA, Israr MQ, Sadaf JR, Ahmed E, Nur O, Willander M (2013) Potentiometric urea biosensor utilizing nano biocomposite of chitosan–iron oxide magnetic nanoparticles. J Phys 414:1–11Google Scholar
  6. Alili L, Chapiro S, Marten GU, Schmidt AM, Zanger K, Brenneisen P (2015) Effect of Fe3O4 nanoparticles on skin tumor cells and dermal fibroblasts. Biomed Res Int 2015:530957PubMedPubMedCentralCrossRefGoogle Scholar
  7. Almeida I, Henriques F, Carvalho MD, Viana AS (2017) Carbon disulfide mediated self-assembly of laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. J Colloid Interface Sci 485:242–250PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interface. Sci Rep 5:14813PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607PubMedPubMedCentralCrossRefGoogle Scholar
  10. Artemov D, Mori N, Okollie B, Bhujwalla ZM (2003) MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49(3):403–408PubMedCrossRefGoogle Scholar
  11. Atanasijevic T, Shusteff M, Fam P, Jasanoff A (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci U S A 103(40):14707–14712PubMedPubMedCentralCrossRefGoogle Scholar
  12. Aziz HY, Gohari MS (2016) Fe3O4/ZnO/Ag3VO4/AgI nanocomposites: quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light. Sep Purif Technol 166:63–72CrossRefGoogle Scholar
  13. Bagheri S, Chandrappa K, Hamid SBA (2013) Generation of hematite nanoparticles via sol–gel method. Res J Chem Sci 3:62–68Google Scholar
  14. Barratt G, Courraze G, Couvreur P (2002) In: Dumitriu S (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, Inc, New YorkGoogle Scholar
  15. Basavegowda N, Magar KBS, Mishra K, Lee YR (2014a) Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem 38:5415–5420CrossRefGoogle Scholar
  16. Basavegowda N, Mishra K, Lee YR (2014b) Sonochemically synthesized ferromagnetic Fe3O4 nanoparticles as a recyclable catalyst for the preparation of pyrrolo[3,4-c]quinoline-1,3-dione derivatives. RSC Adv 4:61660–61666CrossRefGoogle Scholar
  17. Baumgartner J, Menguy N, Gonzalez TP, Morin G, Widdrat M, Faivre D (2016) Elongated magnetite nanoparticle formation from a solid ferrous precursor in a magnetotactic bacterium. J R Soc Interface 13(124):20160665. https://doi.org/10.1098/rsif.2016.0665PubMedCentralCrossRefPubMedGoogle Scholar
  18. Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117PubMedCrossRefGoogle Scholar
  19. Bellusci M, La Barbera A, Padella F et al (2014) Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomedicine 9:1919–1929PubMedPubMedCentralGoogle Scholar
  20. Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34PubMedCrossRefGoogle Scholar
  21. Benelli G, Iacono AL, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection. Parasitol Res 115:2131–2137PubMedCrossRefGoogle Scholar
  22. Bhandari R, Gupta P, Dziubla T, Hilt JZ (2016) Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl 67:59–64PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bomati-Miguel O, Mazeina L, Navrotsky A, Veintemillas-Verdaguer S (2008) Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem Mater 20:591–598CrossRefGoogle Scholar
  24. Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):24174–24193PubMedPubMedCentralCrossRefGoogle Scholar
  25. Butoescu N, Seemayer CA, Palmer G, Guerne PA, Gabay C, Doelker E, Jordan O (2009) Magnetically retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis model in mice. Arthritis Res Ther 11:R72PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soya bean sprouts–mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(19):2938–2943CrossRefGoogle Scholar
  27. Carenza E, Barceló V, Morancho A, Montaner J, Rosell A, Roig A (2014) Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater 10:3775–3785PubMedCrossRefGoogle Scholar
  28. Carvalho M, Ferreira PJ, Mendes VS, Silva R, Pereira JA, Jerónimo C, Silva BM (2010) Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem Toxicol 48:441–447PubMedCrossRefGoogle Scholar
  29. Chang Y-P, Ren C-L, Qu J-C, Chen X-G (2012) Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl Surf Sci 261:504–509CrossRefGoogle Scholar
  30. Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D (2012) Recognition of dextran–superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem 23(5):1003–1009PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34CrossRefGoogle Scholar
  32. Chauhan N, Narang J, Jain U (2016) Amperometric acetylcholinesterase biosensor for pesticides monitoring utilising iron oxide nanoparticles and poly(indole-5-carboxylic acid). J Exp Nanosci 11:111–122CrossRefGoogle Scholar
  33. Cheng KW, Hsu SH (2017) A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles. Int J Nanomedicine 12:1775–1789PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cheng R, Cheng C, Liu GH, Zheng X, Li G, Li J (2015) Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system. Chemosphere 141:138–143PubMedCrossRefGoogle Scholar
  35. Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130:1395–1403PubMedCrossRefGoogle Scholar
  36. Dadashzadeh ER, Hobson M, Henry Bryant L Jr, Dean DD, Frank JA (2013) Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol Imaging 8(1):50–56PubMedPubMedCentralCrossRefGoogle Scholar
  37. Daldrup-Link H, Golovko D, Ruffell B, Denardo DG, Castaneda R, Ansari C, Rao J, Tikhomirov GA, Wendland MF, Corot C, Coussens LM (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17(17):5695–5704PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dani RK, Schumann C, Taratula O, Taratula O (2014) Temperature-tunable iron oxide nanoparticles for remote-controlled drug release. AAPS PharmSciTech 15(4):963–972PubMedPubMedCentralCrossRefGoogle Scholar
  39. Darezereshki E, Ranjbar M, Bakhtiari F (2010) One-step synthesis of maghemite (c-Fe2O3) nano-particles by wet chemical method. J Alloys Compd 502:257–260CrossRefGoogle Scholar
  40. Davenport AJ, Oblonsky LJ, Ryan MP, Toney MF (2000) The structure of the passive film that forms on iron in aqueous environments. J Electrochem Soc 147:2162–2173CrossRefGoogle Scholar
  41. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi. Parasitol Res 114:1519–1529PubMedCrossRefPubMedCentralGoogle Scholar
  42. Douziech-Eyrolles L, Marchais H, Herve K, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2:541–550PubMedPubMedCentralGoogle Scholar
  43. Duan X, Corgié SC, Aneshansley DJ, Wang P, Walker LP, Giannelis EP (2014) Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater. Chemphyschem 15(5):974–980PubMedCrossRefGoogle Scholar
  44. Elbialy NS, Fathy MM, Khalil WM (2015) Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int J Pharm 490(1–2):190–199PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Tech (Berl) 58(6):493–507CrossRefGoogle Scholar
  46. Foy SP, Labhasetwar V (2011) Oh the irony: iron as a cancer cause or cure? Biomaterials 32(35):9155–9158PubMedPubMedCentralCrossRefGoogle Scholar
  47. Franke K, Kettering M, Lange K, Kaiser WA, Hilger I (2013) The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels. Int J Nanomedicine 8:351–363PubMedPubMedCentralGoogle Scholar
  48. Gamarra LF, da Costa-Filho AJ, Mamani JB, de Cassia Ruiz R, Pavon LF, Sibov TT, Vieira ED, Silva AC, Pontuschka WM, Amaro E Jr (2010) Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials. Int J Nanomed 5:203–211CrossRefGoogle Scholar
  49. Garcıa-Jimeno S, Estelrich J (2013) Ferrofluid based on polyethylene glycol–coated iron oxide nanoparticles: characterization and properties. Colloids Surf A Physicochem Eng Asp 420:74–81CrossRefGoogle Scholar
  50. Gholoobi A, Meshkat Z, Abnous K, Ghayour-Mobarhan M, Ramezani M, Shandiz FH, Verma K, Darroudi M (2017) Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects. J Mol Struct 1141:594–599CrossRefGoogle Scholar
  51. Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of a-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285:296–302CrossRefGoogle Scholar
  52. Govindarajan M, Benelli G (2017) A facile one-pot synthesis of ecofriendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28:15–36CrossRefGoogle Scholar
  53. Govindarajan M, Nicoletti M, Benelli G (2016) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761CrossRefGoogle Scholar
  54. Granot D, Shapiro EM (2011) Release activation of iron oxide nanoparticles: (REACTION) a novel environmentally sensitive MRI paradigm. Magn Reson Med 65(5):1253–1259PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guertin J, Jacobs JA, Avakian CP (2016) Chromium(VI) handbook. CRC Press, Boca RatonGoogle Scholar
  56. Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–1889PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hafeli U, Schutt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic microspheres. Plenum Press, New YorkCrossRefGoogle Scholar
  60. Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine 6:787–794PubMedPubMedCentralGoogle Scholar
  61. Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber GO, Thuomas KA (1987) Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol 28:703–705PubMedCrossRefPubMedCentralGoogle Scholar
  62. Herrera-Becerra R, Zorrilla C, Ascencio JA (2007) Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route. J Phys Chem 111(44):16147–16153Google Scholar
  63. Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA (2002) Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Investig Radiol 37(10):580–586CrossRefGoogle Scholar
  64. Hoff D, Sheikh L, Bhattacharya S, Nayar S, Webster TJ (2013) Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int J Nanomedicine 8:703–710PubMedPubMedCentralGoogle Scholar
  65. Hong R, Li JH, Wang J, Li HZ (2007) Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Particuol 5:186–191CrossRefGoogle Scholar
  66. Horniblow RD, Dowle M, Iqbal TH, Latunde-Dada GO, Palmer RE, Pikramenou Z, Tselepis C (2015) Alginate–iron speciation and its effect on in vitro cellular iron metabolism. PLoS One 10(9):0138240CrossRefGoogle Scholar
  67. Hribernik S, Sfiligoj-Smole M, Bele M, Gyergyek S, Jamnik J, Stana-Kleinschek K (2012) Synthesis of magnetic iron oxide particles: development of an in situ coating procedure for fibrous materials. Colloids Surf A Physicochem Eng Asp 400:58–66CrossRefGoogle Scholar
  68. Hu J, Lo IM, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticle. Water Sci Technol 50:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  69. Itodo AU, Itodo HU (2010) Quantitative specification of potentially toxic metals in expired canned tomatoes found in village markets. Nat Sci 8(4):54–59Google Scholar
  70. Ittrich H, Peldschus K, Raabe N, Kaul M, Adam G (2013) Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. Rofo 185(12):1149–1166PubMedCrossRefPubMedCentralGoogle Scholar
  71. Izadiyan Z, Shameli K, Hara H, Taib SHM (2017) Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. J Mol Struct 151:97–105Google Scholar
  72. Jingting C, Huining L, Yi Z (2011) Preparation and characterization of magnetic nanoparticles containing Fe3O4–dextran–anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector. Int J Nanomedicine 6:285–294PubMedPubMedCentralGoogle Scholar
  73. Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6:647–653PubMedCrossRefPubMedCentralGoogle Scholar
  74. Juang JH, Shen CR, Wang JJ, Kuo CH, Chien YW, Kuo HY, Chen FR, Chen MH, Yen TC, Tsai ZT (2013) Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles. PLoS One 8(4):62626CrossRefGoogle Scholar
  75. Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W et al (2010) Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 21(11):2128–2135PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and g-Fe2O3 particles. Chem Mater 8(9):2209–2211CrossRefGoogle Scholar
  78. Karaoglu E, Baykal A, Erdemi H, Alpsoy L, Sozeri H (2011) Synthesis and characterization of dl-thioctic acid (DLTA)–Fe3O4 nanocomposite. J Alloys Compd 509:9218–9225CrossRefGoogle Scholar
  79. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732PubMedCrossRefPubMedCentralGoogle Scholar
  80. Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7(8):e43983PubMedPubMedCentralCrossRefGoogle Scholar
  81. Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263PubMedCrossRefPubMedCentralGoogle Scholar
  82. Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kim J-H, Tratnyek PG, Chang Y-S (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42:4106–4112PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kim SG, Harel N, Jin T, Kim T, Lee P, Zhao F (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26(8):949–962PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kocbek P, Kralj S, Kreft ME, Kristl J (2013) Targeting intracellular compartments by magnetic polymeric nanoparticles. Eur J Pharm Sci 50(1):130–138PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kolhatkar AG, Dannongoda C, Kourentzi K, Jamison AC, Nekrashevich I, Kar A, Cacao E, Strych U, Rusakova I, Martirosyan KS, Litvinov D, Lee TR, Willson RC (2015) Enzymatic synthesis of magnetic nanoparticles. Int J Mol Sci 16(4):7535–7550PubMedPubMedCentralCrossRefGoogle Scholar
  87. Koneracka M, Kopcansky P, Antalik M, Timko M, Ramchand CN, Lobo D, Mehta RV, Upadhyay RV (1999) Immobilization of proteins and enzymes to fine magnetic particles. J Magn Magn Mater 201:427–430CrossRefGoogle Scholar
  88. Koneracka M, Kopcansky P, Timko M, Ramchand CN, Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B Enzym 18:13–18CrossRefGoogle Scholar
  89. Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24:473–484PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon D, Mihalic J, Wabler M, Burghardt E, Gruettner C, Geyh A, Brayton C, Deweese TL, Ivkov R (2012) Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond) 7(11):1697–1711CrossRefGoogle Scholar
  92. Latha N, Gowri M (2014) Biosynthesis and characterization of Fe3O4 nanoparticles using Carica papaya leaves extract. Int J Sci Res 3(11):1551–1556Google Scholar
  93. Lee J, Tetsuhiko I, Mamoru S (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177(2):490–494CrossRefGoogle Scholar
  94. Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089PubMedPubMedCentralCrossRefGoogle Scholar
  95. Li L, Jiang W, Luo K et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595–615PubMedPubMedCentralCrossRefGoogle Scholar
  96. Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 9:3347–3361PubMedPubMedCentralGoogle Scholar
  97. Li YJ, Dong M, Kong FM, Zhou JP (2015) Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm 489(1–2):83–90PubMedCrossRefGoogle Scholar
  98. Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, Hu C, Xu L (2004) Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Commun 129:485–490CrossRefGoogle Scholar
  99. Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Coll Surf A Physicochem Eng Asp 191:97–105CrossRefGoogle Scholar
  100. Lindemann A, Lüdtke-Buzug K, Fräderich BM, Gräfe K, Pries R, Wollenberg B (2014) Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 9:5025–5040PubMedPubMedCentralCrossRefGoogle Scholar
  101. Liu JF, Zhao ZS, Jiang GB (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949–6954PubMedCrossRefGoogle Scholar
  102. Lopez-Tellez G, Balderas-Hernández P, Barrera-Díaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. J Nanosci Nanotechnol 13(3):2354–2361PubMedCrossRefGoogle Scholar
  103. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31CrossRefGoogle Scholar
  104. Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J Hazard Mater 303:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomed 7:4809–4818Google Scholar
  106. Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009a) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518PubMedCrossRefPubMedCentralGoogle Scholar
  107. Mahmoudi M, Simchi A, Imani M (2009b) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580CrossRefGoogle Scholar
  108. Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2009c) An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 75:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  110. Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9(1):e85835PubMedPubMedCentralCrossRefGoogle Scholar
  111. Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S et al (2016) Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnol 14(1):37CrossRefGoogle Scholar
  112. Martinez-Cabanas M, Lopez-Garcia M, Barriada JL, Herrero R, Sastre de Vicente ME (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91CrossRefGoogle Scholar
  113. Mazumder JA, Ahmad R, Sardar M (2016) Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles. Int J Biol Macromol 93(Pt A):66–74PubMedCrossRefGoogle Scholar
  114. Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496CrossRefGoogle Scholar
  115. Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C: Environ Carcinog Ecotoxicol Rev 34:1–32CrossRefGoogle Scholar
  116. Mistry N, Stokes AM, Gambrell JV, Quarles CC (2014) Nitrite induces the extravasation of iron oxide nanoparticles in hypoxic tumor tissue. NMR Biomed 27(4):425–430PubMedPubMedCentralCrossRefGoogle Scholar
  117. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318PubMedGoogle Scholar
  118. Mukherjee R, Sinha A, Lama Y, Kumar V (2015) Utilization of zero valent iron (ZVI) particles produced from steel industry waste for in-situ remediation of ground water contaminated with organo-chlorine pesticide heptachlor. Int J Environ Res 9:19–26Google Scholar
  119. Muller K, Skepper JN, Tang TY, Graves MJ, Patterson AJ, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH (2008) Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (ferumoxtran-10) in human monocyte-macrophages: implications for magnetic resonance imaging. Biomaterials 29(17):2656–2662PubMedCrossRefGoogle Scholar
  120. Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Kumar PM, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D (2015) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res 114:3657–3664PubMedCrossRefGoogle Scholar
  121. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479–2488PubMedPubMedCentralCrossRefGoogle Scholar
  122. Norouz Dizaji A, Yilmaz M, Piskin E (2016) Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents. Artif Cells Nanomed Biotechnol 44(4):1109–1115PubMedGoogle Scholar
  123. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium–contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77CrossRefGoogle Scholar
  124. Pardoe H, Clark P, Pierre TS, Moroz P, Jones S (2003) A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferromagnetic particles designed for magnetic hyperthermia treatment of tumors. J Magn Reson Imaging 21:483–488CrossRefGoogle Scholar
  125. Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 17:2477–2481CrossRefGoogle Scholar
  126. Park YC, Smith JB, Pham T, Whitaker RD, Sucato CA, Hamilton JA, Bartolak-Suki E, Wong JY (2014) Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf B Biointerfaces 119:106–114PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pottler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, Hofmann S, Wiest I, Jeschke U, Alexiou C, Janko C (2015) Genotoxicity of superparamagnetic iron oxide nanoparticles in granulosa cells. Int J Mol Sci 16(11):26280–26290PubMedPubMedCentralCrossRefGoogle Scholar
  128. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961,  https://doi.org/10.1155/2014/963961CrossRefGoogle Scholar
  129. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713Google Scholar
  130. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363PubMedPubMedCentralGoogle Scholar
  131. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014
  132. Prasad R, Jha A and Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0
  133. Prosen L, Prijic S, Music B, Lavrencak J, Cemazar M, Sersa G (2013) Magnetofection: a reproducible method for gene delivery to melanoma cells. Biomed Res Int 2013:209452PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ramasahayam SK, Gunawan G, Finlay C, Viswanathan T (2012) Renewable resource-based magnetic nanocomposites for removal and recovery of phosphorous from contaminated waters. Water Air Soil Pollu 223(8):4853–4863CrossRefGoogle Scholar
  135. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63PubMedPubMedCentralCrossRefGoogle Scholar
  136. Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 6(11):3517–3520PubMedCrossRefGoogle Scholar
  137. Rossi LM, Quach AD, Rosenzweig Z (2004) Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal Bioanal Chem 380(4):606–613PubMedCrossRefPubMedCentralGoogle Scholar
  138. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633CrossRefGoogle Scholar
  139. Schutz CA, Staedler D, Crosbie-Staunton K, Movia D, Chapuis Bernasconi C, Kenzaoui BH, Prina-Mello A, Juillerat-Jeanneret L (2014) Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles. Int J Nanomedicine 9:3481–3498PubMedPubMedCentralGoogle Scholar
  140. Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera GP (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28CrossRefGoogle Scholar
  141. Seneterre E, Weissleder R, Jaramillo D et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179:529–533PubMedCrossRefPubMedCentralGoogle Scholar
  142. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. J Nanomater Biostruct 7:1655–1660Google Scholar
  143. Shahwan T, Abu Sirriah S, Nairat M, Boyac E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  144. Shameli K (2013) Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. Int J Nanomedicine 8:1817–1823PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shanmugam S, Thandavan K, Gandhi S, Sethuraman S, Rayappan JB, Krishnan UM (2011) Development and evaluation of a highly sensitive rapid response enzymatic nanointerfaced biosensor for detection of putrescine. Analyst 136(24):5234–5240PubMedCrossRefPubMedCentralGoogle Scholar
  147. Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, Teeguarden JG, Thrall BD (2014) Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro. Nanotoxicology 8(6):663–675PubMedCrossRefPubMedCentralGoogle Scholar
  148. Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2012) Iron oxide nanoparticles suppressed T helper 1 cell–mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7:2729–2737PubMedPubMedCentralGoogle Scholar
  149. Shen S, Wu L, Liu J, Xie M, Shen H, Qi X, Yan Y, Ge Y, Jin Y (2015) Core–shell structured Fe3O4@TiO2–doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm 486(1–2):380–388PubMedCrossRefGoogle Scholar
  150. Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. Int J Nanomedicine 9:273–287PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shukla VK, Singh RP, Pandey AC (2010) Black pepper assisted biomimetic synthesis of silver nanoparticles. J Alloys Compd 507(1):L13–L16CrossRefGoogle Scholar
  152. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23–24):3926–3933PubMedPubMedCentralCrossRefGoogle Scholar
  153. Singh RP (2016) Nanobiosensors: potentiality towards bioanalysis. J Bioanal Biomed 8:e143.  https://doi.org/10.4172/1948-593X.1000e143CrossRefGoogle Scholar
  154. Singh RP (2017) Application of nanomaterials towards development of nanobiosensors and their utility in agriculture (Chapter 14). In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, New York, pp 293–303CrossRefGoogle Scholar
  155. Singh RP (2019) Nanocomposites: recent trends, developments and applications (Chapter 2). In: Aliofkhazraei M (ed) Carbon nanotube and graphene composites. Advances in nanostructured composites, vol 1. CRC Press, Boca Raton, p 552Google Scholar
  156. Singh RP, Choi JW (2010) Bio-nanomaterials for versatile bio-molecules detection technology [letter]. Adv Mat Lett 1(1):83–84CrossRefGoogle Scholar
  157. Singh RP, Oh BK, Choi JW (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79(2):153–161PubMedCrossRefGoogle Scholar
  158. Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2(4):313–317CrossRefGoogle Scholar
  159. Singh RP, Choi JW, Tiwari A, Pandey AC (2012a) Utility and potential application of nanomaterials in medicine. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF (eds) Biomedical materials and diagnostic devices. Wiley, Hoboken.  https://doi.org/10.1002/9781118523025.ch7CrossRefGoogle Scholar
  160. Singh RP, Choi JW, Pandey AC (2012b) Smart nanomaterials for biosensors, biochips and molecular bioelectronics (Chapter 1). In: Li S, Ge Y, Li H (eds) Smart nanomaterials for sensor application. Bentham Science Publisher, Dubai, pp 3–41CrossRefGoogle Scholar
  161. Singh RP, Kumar K, Rai R, Tiwari A, Choi JW, Pandey AC (2012c) Synthesis, characterization of metal oxide based nanomaterials and its application in biosensing (Chapter 11). In: Rai R (ed) Synthesis, characterization and application of smart material. Nova Science Publishers, Inc, New York, pp 225–238Google Scholar
  162. Singh RP, Choi JW, Tiwari A, Pandey AC (2012d) Biomimetic materials toward application of nanobiodevices (Chapter 20). In: Tiwari A, Mishra AK, Kobayashi H, Turner AP (eds) Intelligent nanomaterials: processes, properties, and applications. Wiley, Hoboken, pp 741–782CrossRefGoogle Scholar
  163. Singh RP, Choi JW, Tiwari A, Pandey AC (2014) Functional nanomaterials for multifarious nanomedicine. In: Tiwari A, Turner APF (eds) Biosensors nanotechnology. Wiley, Hoboken.  https://doi.org/10.1002/9781118773826.ch6CrossRefGoogle Scholar
  164. Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine 8:4063–4076PubMedPubMedCentralGoogle Scholar
  165. Stampar F, Solar A, Hudina M, Veberic R, Colaric M (2006) Traditional walnut liqueur—cocktail of phenolics. Food Chem 95:627–631CrossRefGoogle Scholar
  166. Starmans LW, Burdinski D, Haex NP, Moonen RP, Strijkers GJ, Nicolay K, Grüll H (2013) Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging. PLoS One 8(2):e57335PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sun JH, Zhang YL, Nie CH, Qian SP, Yu XB, Xie HY, Zhou L, Zheng SS (2012) In vitro labeling of endothelial progenitor cells isolated from peripheral blood with superparamagnetic iron oxide nanoparticles. Mol Med Rep 6(2):282–286PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system–relevant cell culture models. Int J Nanomedicine 8:961–970PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7(31):17535–17544PubMedPubMedCentralCrossRefGoogle Scholar
  170. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y (2011) Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 6:27PubMedPubMedCentralCrossRefGoogle Scholar
  171. Tartaj P, Serna CJ (2003) Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc 125:15754–15755PubMedCrossRefGoogle Scholar
  172. Tartaj P, González‐Carreño T, Serna CJ (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16:529–533CrossRefGoogle Scholar
  173. Thakkar KN, Mhatre SS, Parikh RY (2010a) Biological synthesis of metallic nanoparticles. Nanomed Nanotechol Biol Med 6:257–262CrossRefGoogle Scholar
  174. Thakkar KN, Mhatre SS, Parikh RY (2010b) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262PubMedCrossRefGoogle Scholar
  175. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4(10):1352–1360PubMedPubMedCentralCrossRefGoogle Scholar
  176. Toki S, Omary RA, Wilson K, Gore JC, Peebles RS Jr, Pham W (2013) A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells. Nanomedicine 9(8):1235–1244PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tomitaka A, Arami H, Gandhi S, Krishnan KM (2015) Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7(40):16890–16898PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tseng SH, Chou MY, Chu IM (2015) Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Int J Nanomedicine 10:3663–3685PubMedPubMedCentralGoogle Scholar
  179. Tsuchiya K, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, Otani H, Takahashi M, Murata K, Murase K, Nohara S, Mukaisho K (2011) Histological study of the biodynamics of iron oxide nanoparticles with different diameters. Int J Nanomedicine 6:1587–1594PubMedPubMedCentralCrossRefGoogle Scholar
  180. Uchiyama MK, Toma SH, Rodrigues SF, Shimada AL, Loiola RA, Cervantes Rodriguez HJ, Oliveira PV, Luz MS, Rabbani SR, Toma HE, Poliselli Farsky SH, Araki K (2015) Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int J Nanomedicine 10:4731–4746PubMedPubMedCentralGoogle Scholar
  181. Valle JP et al (2017) Sorption of Cr(III) and Cr(VI) to K2Mn4O9 nanomaterial a study of the effect of pH, time, temperature and interferences. Microchem J 133:614–621PubMedPubMedCentralCrossRefGoogle Scholar
  182. Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi N (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244CrossRefGoogle Scholar
  183. Vidal-Vidal J, Rivas J, Lopez-Quintela M (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288:44–51CrossRefGoogle Scholar
  184. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometersized Fe3O4 particles. Mater Sci Eng A 286:101–105CrossRefGoogle Scholar
  185. Vincent S, Kovendan K, Chandramohan B, Kamalakannan S, Kumar PM, Vasugi C, Praseeja C, Subramaniam J, Govindarajan M, Murugan K (2017) Swift fabrication of silver nanoparticles using Bougainvillea glabra: potential against the Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Clust Sci 28:37–58CrossRefGoogle Scholar
  186. Vuong QV, Hirun S, Chuen TL, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ (2014) Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J Herb Med 4:134–140CrossRefGoogle Scholar
  187. Wahajuddin S, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40PubMedPubMedCentralGoogle Scholar
  189. Wang Z, Cuschieri A (2013) Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci 14(5):9111–9125PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  191. Wang L, Park HY, Lim SII, Schadt MJ, Mott D, Luo J, Wang X, Zhong CJ (2008) Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J Mat Chem 18:2629–2635CrossRefGoogle Scholar
  192. Wang YXJ, Xuan S, Port M, Idee JM (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19:6575–6593PubMedPubMedCentralCrossRefGoogle Scholar
  193. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419CrossRefGoogle Scholar
  194. Wang Y, Hu J, Dai Z, Li J, Huang J (2016 Nov) In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem 108:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wei H, Insin N, Lee J, Han HS, Cordero JM, Liu W, Bawendi MG (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12(1):22–25PubMedCrossRefPubMedCentralGoogle Scholar
  196. Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498PubMedCrossRefPubMedCentralGoogle Scholar
  197. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10PubMedCrossRefPubMedCentralGoogle Scholar
  198. West DL, White SB, Zhang Z, Larson AC, Omary RA (2014) Assessment and optimization of electroporation-assisted tumoral nanoparticle uptake in a nude mouse model of pancreatic ductal adenocarcinoma. Int J Nanomedicine 9:4169–4176PubMedPubMedCentralCrossRefGoogle Scholar
  199. Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres—model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 158:141–146PubMedCrossRefPubMedCentralGoogle Scholar
  200. Williams JP, Southern P, Lissina A, Christian HC, Sewell AK, Phillips R, Pankhurst Q, Frater J (2013) Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int J Nanomedicine 8:2543–2554PubMedPubMedCentralCrossRefGoogle Scholar
  201. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wu Y, Zhang J, Tong Y, Xu X (2009) Chromium(VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. J Hazard Mater 172(2–3):1640–1645PubMedCrossRefPubMedCentralGoogle Scholar
  203. Wu YN, Li-Xing Y, Xuan-Yu S, I-Chen L, Joanna MB, Ratinac KR, Dong-Hwang C, Pall T, Dar-Bin S, Filip B (2011a) The selective growth inhibition of oral cancer by iron core–gold shell nanoparticles through mitochondria mediated autophagy. Biomaterials 32:4565–4573PubMedCrossRefPubMedCentralGoogle Scholar
  204. Wu YN, Chen DH, Shi XY, Lian CC, Wang TY, Yeh CS, Ratinac KR, Thordarson P, Braet F, Shieh DB (2011b) Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core–gold shell nanoparticles. Nanomedicine: NBM 7:420–427CrossRefGoogle Scholar
  205. Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species–related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94PubMedCrossRefPubMedCentralGoogle Scholar
  206. Xin BJ, Si SF, Xing GW (2010) Protease immobilization on gamma-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5(6):1389–1394PubMedPubMedCentralGoogle Scholar
  207. Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743PubMedCrossRefGoogle Scholar
  208. Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:1–7CrossRefGoogle Scholar
  209. Yoo MK, Park IY, Kim IY, Park IK, Kwon JS, Jeong HJ et al (2008) Superparamagnetic iron oxide nanoparticles coated with mannan for macrophage targeting. J Nanosci Nanotechnol 8(10):5196–5202PubMedCrossRefGoogle Scholar
  210. Yu Y, Sun D (2010) Super paramagnetic iron oxide nanoparticle “theranostics” for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 3:117–130PubMedCrossRefGoogle Scholar
  211. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem 47(29):5362–5365CrossRefGoogle Scholar
  212. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite–polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57PubMedCrossRefGoogle Scholar
  213. Zaloga J, Janko C, Agarwal R, Nowak J, Müller R, Boccaccini AR, Lee G, Odenbach S, Lyer S, Alexiou C (2015) Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles. Int J Mol Sci 16(5):9368–9384PubMedPubMedCentralCrossRefGoogle Scholar
  214. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  215. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561PubMedCrossRefGoogle Scholar
  216. Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal–organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81PubMedCrossRefGoogle Scholar
  217. Zhang L, Wang X, Zou J, Liu Y, Wang J (2015) Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2. J Nanobiotechnol 13:3CrossRefGoogle Scholar
  218. Zhang Y, Wang Z, Li X, Wang L, Yin M, Wang L, Chen N, Fan C, Song H (2016) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393PubMedCrossRefGoogle Scholar
  219. Zhao D-L, Teng P, Xu Y, Xia Q-S, Tang J-T (2010) Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core–shell structure. J Alloys Compd 502:392–395CrossRefGoogle Scholar
  220. Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. Chem Sustain Energy Mater 4(10):1344–1387Google Scholar
  221. Zhou X, Jing G, Lv B, Zhou Z, Zhu R (2016) Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system. Chemosphere 160:332–341PubMedCrossRefGoogle Scholar
  222. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717PubMedCrossRefGoogle Scholar
  223. Zhu MT, Wang Y, Feng WY, Wang B, Wang M, Ouyang H, Chai ZF (2010) Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol 10(12):8584–8590PubMedCrossRefGoogle Scholar
  224. Ziv-Polat O, Skaat H, Shahar A, Margel S (2012) Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 7:1259–1274PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravindra Pratap Singh
    • 1
  1. 1.Department of BiotechnologyIndira Gandhi National Tribal University (Central University)AmarkantakIndia

Personalised recommendations